• Title/Summary/Keyword: optimal planning

Search Result 1,257, Processing Time 0.025 seconds

Path Planning for Search and Surveillance of Multiple Unmanned Aerial Vehicles (다중 무인 항공기 이용 감시 및 탐색 경로 계획 생성)

  • Sanha Lee;Wonmo Chung;Myunggun Kim;Sang-Pill Lee;Choong-Hee Lee;Shingu Kim;Hungsun Son
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • This paper presents an optimal path planning strategy for aerial searching and surveying of a user-designated area using multiple Unmanned Aerial Vehicles (UAVs). The method is designed to deal with a single unseparated polygonal area, regardless of polygonal convexity. By defining the search area into a set of grids, the algorithm enables UAVs to completely search without leaving unsearched space. The presented strategy consists of two main algorithmic steps: cellular decomposition and path planning stages. The cellular decomposition method divides the area to designate a conflict-free subsearch-space to an individual UAV, while accounting the assigned flight velocity, take-off and landing positions. Then, the path planning strategy forms paths based on every point located in end of each grid row. The first waypoint is chosen as the closest point from the vehicle-starting position, and it recursively updates the nearest endpoint set to generate the shortest path. The path planning policy produces four path candidates by alternating the starting point (left or right edge), and the travel direction (vertical or horizontal). The optimal-selection policy is enforced to maximize the search efficiency, which is time dependent; the policy imposes the total path-length and turning number criteria per candidate. The results demonstrate that the proposed cellular decomposition method improves the search-time efficiency. In addition, the candidate selection enhances the algorithmic efficacy toward further mission time-duration reduction. The method shows robustness against both convex and non-convex shaped search area.

Path Planning Using an Information Grid Map for Safe Navigation (안전한 주행을 위한 정보 격자지도 기반의 경로계획)

  • Jung, Min-Kuk;Park, Joong-Tae;Song, Jae-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.623-628
    • /
    • 2012
  • Conventional path planning methods have focused on the generation of an optimal shortest path to the goal. However, this optimal path cannot guarantee safe navigation, because it can often lead to a narrow area. Therefore, we propose a Coulomb's law-based safe path planning method that uses an information grid map. The information grid map includes four types of information: occupied, empty, guide, and dangerous areas. A safe path can be generated away from the dangerous area and close to the guide area by repulsive and attractive forces, respectively. Experiments and simulations show that the proposed method can generate paths inside the safe region and is useful for safe navigation.

A Petri Net based Disassembly Sequence Planning Model with Precedence Operations (분해우선작업을 가지는 페트리 넷 기반의 분해순서계획모델)

  • Seo, Kwang-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1392-1398
    • /
    • 2008
  • This paper presents a Petri Net (PN) based disassembly sequence planning model with precedence operations. All feasible disassembly sequences are generated by a disassembly tree and a disassembly sequence is determined using the disassembly precedence and disassembly value matrix, The precedence of disassembly operations is determined through a disassembly tree and the value of disassembly is induced by economic analysis in the end-of-life phase. To solve the disassembly sequence planning model with precedence operations, a heuristic algorithm based on PNs is developed. The developed algorithm generates and searches a partial reachability graph to arrive at an optimal or near-optimal disassembly sequence based on the firing sequence of transitions of the PN model. A refrigerator is shown as an example to demonstrate the effectiveness of proposed model.

Performance Evaluation of Different Route Planning Algorithms in the Vehicle Navigation System (차량 항법 시스템의 경로 탐색을 위한 탐색 알고리즘들의 성능 비교)

  • Lee, Jae-Mu;Kim, Jong-Hoon;Jeon, H.-Seok
    • Journal of The Korean Association of Information Education
    • /
    • v.2 no.2
    • /
    • pp.252-259
    • /
    • 1998
  • Vehicle navigation systems employ a certain route planning algorithm that provides the shortest path between the starting point and the destination point. The performance of a given route planning algorithm is measured through the degree of optimal route selection and the time cost to complete searching an optimal path. In this paper, various route planning algorithms are evaluated through computer simulation based on a real digital map database. Among those algorithms evaluated in this paper, the Modified Bi-directional A${\ast}$ algorithm is found to be the best algorithm for use in vehicle navigation systems.

  • PDF

Collision-Free Motion Planning of a Robot Using Free Arc concept (프리아크 개념을 이용한 로봇의 충돌회피 동작 계획)

  • Lee, Seok-Won;Nam, Yun-Seok;Lee, Beom-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.3
    • /
    • pp.317-328
    • /
    • 2000
  • This paper presents an effective approach to collision-free motion planning of a robot in the work-space including time-varying obstacles. The free arc is defined as a set composed of the configuration points of the robot satisfying collision-free motion constraint at each sampling time. We represent this free arc with respect to the new coordinate frame centered at the goal configuration and there for the collision-free path satisfying motion constraint is obtained by connecting the configuration points of the free arc at each sampling mined from the sequence of free arcs the optimality is determined by the performance index. Therefore the complicated collision-free motion planning problem of a robot is transformed to a simplified SUB_Optimal Collision Avoidance Problem(SOCAP). We analyze the completeness of the proposed approach and show that it is partly guaranteed using the backward motion. Computational complexity of our approach is analyzed theoretically and practical computation time is compared with that of the other method. Simulation results for two cally and practical computation time is compared with that of the other method. Simulation results for two SCARA robot manipulators are presented to verify the efficacy of the proposed method.

  • PDF

Development of Expert System for Cold Forging of Axisymmetric Product - Horizontal Split and Optimal Design of Multi-former Die Set - (준축대칭 제품 냉간단조용 전문가시스템 개발 - 다단포머 금형의 수평분할 밀 최적설계 -)

  • Park, Chul-Woo;Cho, Chun-Soo;Kim, Chul;Kim, Young-Ho;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.32-40
    • /
    • 2004
  • This paper deals with an automated computer-aided process planning and die design system by which designer can determine operation sequences even if they have a little experience in process planning and die design for axisymmetric products. An attempt is made to link programs incorporating a number of expert design rules with the process variables obtained by commercial FEM softwares, DEFORM and ANSYS, to form a useful package. The system is composed of four main modules. The process planning and the die design modules consider several factors, such as the complexities of preform geometry, punch and die profiles, specifications of available multi former, and the availability of standard parts. They can provide a flexible process based on either the reduction in the number of forming sequences by combining the possible two processes in sequence, or the reduction of deviation of the distribution on the level of the required forming loads by controlling the forming ratios. Especially in die design module an optimal design technique and horizontal split die were investigated for determining appropriate dimensions of components of multi-former die set. It is constructed that the proposed method can be beneficial for improving the tool life of die set at practice.

Development of the Family Disaggregation Algorithm for Hierarchical Production Planning (계층적 생산계획의 계품군 분해해법 개발)

  • 김창대
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.18 no.1
    • /
    • pp.1-18
    • /
    • 1993
  • The family disaggregation model of hierarchical production planning (HPP) is the problem of (0 -1) mixed integer programming that minimizes the total sum of setup costs and inventory holding costs over the planning horizon. This problem is hard in a practical sense since optimal solution algorithms have failed to solve it within reasonable computation times. Thus effective familoy disaggregation algorithm should be developed for HPP. The family disaggregation algorithm developed in this paper consists of the first stage of finding initial solutions and the second stage of improving initial solutions. Some experimental results are given to verify the effectiveness of developed disaggregation algorithm.

  • PDF

A study on the transmission planning using OPF in CBP markets (CBP 시장에서 OPF를 활용한 송전설비계획에 관한 연구)

  • Han, Seok-Man;Kim, Kwang-Mo;Chung, Koo-Hyung;H.Kim, Bal-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.412-413
    • /
    • 2006
  • This paper proposed the transmission planning mechanism in competitive power markets. This mechanism used Optimal Power Flow(OPF) to calculate operation cost and Contingency Constrained OPF(CC-OPF) to consider N-1 contingency outage. In addition, this algorithm deduced a yearly transmission planning using Dynamic Programming(DP).

  • PDF

Motion planning of a robot manipulator for conveyor tracking (컨베이어 추적을 위한 로보트 매니퓰레이터의 동작 계획)

  • 박태형;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.154-159
    • /
    • 1989
  • This paper presents a motion planning algorithm for conveyor tracking. We formulate the problem as the linear quadratic tracking problem in optimal control theory and solve it through dynamic programming. In the proposed algorithm, the steady-state tracking error is eliminated completely, and the joint torque, velocity, acceleration, and jerks are considered as some constraints. Numerical examples are then presented to demonstrate the utility of the proposed motion planning algorithm.

  • PDF

Development of an automatic trajectory planning system(ATPS) for painting robots (페인팅로보트의 자동궤적계획시스템 개발에 관한 연구)

  • 서석환;우인기;노성기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.394-399
    • /
    • 1990
  • We develop an automatic trajectory planning system (ATPS) for painting robots by proposing a new trajectory planning scheme. The new scheme considers geometric modeling, painting mechanics, and robot dynamics to output an optimal trajectory (in the sense of coating thickness and painting time) based on the CAD data describing the shape of objects, The new scheme is implemented in SUN/4 workstation to develop an ATPS for painting robots. To test the validity of the new scheme and to illustrate the developed system, numerous runs are performed and analyzed.

  • PDF