• Title/Summary/Keyword: optimal passive control

Search Result 154, Processing Time 0.021 seconds

Stochastic vibration suppression analysis of an optimal bounded controlled sandwich beam with MR visco-elastomer core

  • Ying, Z.G.;Ni, Y.Q.;Duan, Y.F.
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.21-31
    • /
    • 2017
  • To control the stochastic vibration of a vibration-sensitive instrument supported on a beam, the beam is designed as a sandwich structure with magneto-rheological visco-elastomer (MRVE) core. The MRVE has dynamic properties such as stiffness and damping adjustable by applied magnetic fields. To achieve better vibration control effectiveness, the optimal bounded parametric control for the MRVE sandwich beam with supported mass under stochastic and deterministic support motion excitations is proposed, and the stochastic and shock vibration suppression capability of the optimally controlled beam with multi-mode coupling is studied. The dynamic behavior of MRVE core is described by the visco-elastic Kelvin-Voigt model with a controllable parameter dependent on applied magnetic fields, and the parameter is considered as an active bounded control. The partial differential equations for horizontal and vertical coupling motions of the sandwich beam are obtained and converted into the multi-mode coupling vibration equations with the bounded nonlinear parametric control according to the Galerkin method. The vibration equations and corresponding performance index construct the optimal bounded parametric control problem. Then the dynamical programming equation for the control problem is derived based on the dynamical programming principle. The optimal bounded parametric control law is obtained by solving the programming equation with the bounded control constraint. The controlled vibration responses of the MRVE sandwich beam under stochastic and shock excitations are obtained by substituting the optimal bounded control into the vibration equations and solving them. The further remarkable vibration suppression capability of the optimal bounded control compared with the passive control and the influence of the control parameters on the stochastic vibration suppression effectiveness are illustrated with numerical results. The proposed optimal bounded parametric control strategy is applicable to smart visco-elastic composite structures under deterministic and stochastic excitations for improving vibration control effectiveness.

Design of piezoelectric transducer arrays for passive and active modal control of thin plates

  • Zenz, Georg;Berger, Wolfgang;Gerstmayr, Johannes;Nader, Manfred;Krommer, Michael
    • Smart Structures and Systems
    • /
    • v.12 no.5
    • /
    • pp.547-577
    • /
    • 2013
  • To suppress vibration and noise of mechanical structures piezoelectric ceramics play an increasing role as effective, simple and light-weighted damping devices as they are suitable for sensing and actuating. Out of the various piezoelectric damping methods this paper compares mode based active control strategies to passive shunt damping for thin plates. Therefore, a new approach for the optimal placement of the piezoelectric sensors/actuators, or more general transducers, is proposed after intense theoretical investigations based on the Kirchhoff kinematical hypotheses of plates; in particular, modal and nilpotent transducers are discussed in detail. Based on the proposed distribution a discrete design for modal transducers is implemented, tested and verified on an experimental setup. For active control the modal sensors clearly identify the eigenmodes, whereas the modal actuators impose distributed eigenstrains in order to reduce the transverse plate vibrations. In contrast to the modal control, passive shunt damping works without requiring additional actuators or auxiliary power and can therefore act as an autonomous system, but it is less effective compensating the flexible vibrations. Exemplarily, an acryl glass plate disturbed by an arbitrary force initialized by a loudspeaker is investigated. Comparing the different methods their specific advantages are highlighted and a significant broadband reduction of the vibrations of up to -20dB is obtained.

Boundary Control of Container Crane;Two-Stage Control of a Container Crane as Nonflexible and Flexible Cable

  • Park, Hahn;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.153-158
    • /
    • 2004
  • In this paper, we proposed a two-stage control of the container crane. The first stage control is time-optimal control for the purpose of fast trolley traveling. With suitable trolley velocity patterns, the sway which is generated during trolley moving is minimized. At the second stage control feedback control law is investigated for the quick suppression of residual vibration after the trolley motion. For more practical system, the container crane system is modeled as a partial differential equation (PDE) system with flexible cable. The dynamics of the cable is derived as a moving system with tension caused by payload using Hamilton's principle for the systems. A control law based upon the Lyapunov's method is derived. It is revealed that a time-varying control force and a suitable passive damping at the actuator can successfully suppress the transverse vibrations.

  • PDF

Design and Analysis of a Passive-type Self-bearing Step Motor (수동형 셀프-베어링 스텝모터의 설계 및 성능해석)

  • Kwak, Ho-Seong;Choi, Dong-Hoon;Kim, Seung-Jong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.415-420
    • /
    • 2006
  • This paper introduces a new self-bearing motor which combines a homopolar step motor and a passive magnetic bearing. Compared with conventional self-bearing motors which are mostly based on the theory of active magnetic bearings and therefore have some difficulties in design of the complicated flux distribution and control of the levitation force and the torque independently, the proposed self-bearing motor has a very simple and novel structure and operating principle. for the levitation, it works just like passive magnetic bearings which use the repulsive force between permanent magnets. On the other hand, its rotation principle is quite similar to that of a conventional homopolar step motor. In this paper, we introduce the basic structure and the operating principle in detail, and show some results of FEM analysis to predict the performance of the proposed self-bearing motor and further, to get the optimal design parameters.

  • PDF

Active Control of Sound Fields from Vibrating Plates Using Piezoelectric and Viscoelastic Material (압전재료와 점탄성 재료를 이용한 평판 진동 음장의 능동제어)

  • Kang, Young-Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.12
    • /
    • pp.950-955
    • /
    • 2002
  • The coupled finite/boundary element method is used in numerical analysis for acoustic radiation from the vibration of rectangular composite plate which is simply supported. This analysis is validated using the Wallace equation for an isotropic plate. Active control of sound fields has been tarried out using 3 pairs of piezoelectric sensor/actuator and a pair of viscoelastic material by Passive constrained layer damping treatment. The results show that the optimal placement of piezoelectric sensor/actuator and VE patch is required to control the sound fields from a vibrating composite plate.

Design Optimization of Passive Control Devices for Dynamic Stall Control (동적실속 수동제어장치 최적설계)

  • Joo, Wan-Don;Lee, Bo-Sung;Yee, Kwan-Jung;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.11-19
    • /
    • 2005
  • In order to improve dynamic stall characteristics of an oscillating airfoil, optimal design has been performed for fixed nose droop and Gurney flap. Fixed nose droop is known to be very effective to improve pitching moment characteristics but may cause degeneration of aerodynamic lift at the same time. On the other hand, Gurney flap has the opposite characteristics. For fixed nose droop, location and angle are chosen as design variables, while length is defined as design variable for Gurney flap. Higher order response surface methodology and sensitivity based optimal design method are employed to handle highly nonlinear problem such as dynamic stall. Optimal design has been performed so that lift and pitching moment are simultaneously improved. The design results show that aerodynamic characteristics can be remarkably improved through present design approach and the present passive control method is as good as active control method which combines variable nose droop and Gurney flap.

Passive RFID Based Mobile Robot Localization and Effective Floor Tag Arrangement (수동 RFID 기반 이동로봇 위치 추정 및 효율적 노면 태그 배치)

  • Kim, Sung-Bok;Lee, Sang-Hyup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1294-1301
    • /
    • 2008
  • Under passive RFID environment, this paper presents a new localization of a mobile robot traversing over the floor covered with tags, which is superior to existing methods in terms of estimation performance and cost effectiveness. Basically, it is assumed that a mobile robot is traveling along a series of straight line segments, each segment at a certain constant velocity, and that the number of tags sensed by a mobile robot at each sampling instant is at most one. First, for a given line segment with known starting point, the velocity and position of a mobile robot is estimated using the spatial and temporal information acquired from the traversed tag. Some discussions are made on the validity of the basic assumptions and the localization for the initial segment with unknown starting point. Second, for a given tag distribution density, the optimal tag arrangement is considered to reduce the position estimation error as well as to make easy the tag attachment on the floor. After reviewing typical tag arrangements, the pseudorandom tag arrangement is devised inspired from the Sudoku puzzle, a number placement puzzle. Third, through experiments using our passive RFID localization system, the validity and performance of the mobile robot localization proposed in this paper is demonstrated.

Lyapunov-based Semi-active Control of Adaptive Base Isolation System employing Magnetorheological Elastomer base isolators

  • Chen, Xi;Li, Jianchun;Li, Yancheng;Gu, Xiaoyu
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.1077-1099
    • /
    • 2016
  • One of the main shortcomings in the current passive base isolation system is lack of adaptability. The recent research and development of a novel adaptive seismic isolator based on magnetorheological elastomer (MRE) material has created an opportunity to add adaptability to base isolation systems for civil structures. The new MRE based base isolator is able to significantly alter its shear modulus or lateral stiffness with the applied magnetic field or electric current, which makes it a competitive candidate to develop an adaptive base isolation system. This paper aims at exploring suitable control algorithms for such adaptive base isolation system by developing a close-loop semi-active control system for a building structure equipped with MRE base isolators. The MRE base isolator is simulated by a numerical model derived from experimental characterization based on the Bouc-Wen Model, which is able to describe the force-displacement response of the device accurately. The parameters of Bouc-Wen Model such as the stiffness and the damping coefficients are described as functions of the applied current. The state-space model is built by analyzing the dynamic property of the structure embedded with MRE base isolators. A Lyapunov-based controller is designed to adaptively vary the current applied to MRE base isolator to suppress the quake-induced vibrations. The proposed control method is applied to a widely used benchmark base-isolated structure by numerical simulation. The performance of the adaptive base isolation system was evaluated through comparison with optimal passive base isolation system and a passive base isolation system with optimized base shear. It is concluded that the adaptive base isolation system with proposed Lyapunov-based semi-active control surpasses the performance of other two passive systems in protecting the civil structures under seismic events.

Passive Suppression of Nonlinear Panel Flutter Using Piezoelectric Materials with Resonant Circuit

  • Moon, Seong-Hwan;Yun, Chul-Yong;Kim, Seung-Jo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.1-12
    • /
    • 2002
  • In this study, a passive suppression scheme for nonlinear flutter problem of composite panel, which is believed to be more reliable than the active control methods in practical operations, is proposed. This scheme utilizes a piezoelectric inductor-resistor series shunt circuit. The finite element equations of motion for an electromechanically coupled system is derived by applying the Hamilton\\`s principle. The aerodynamic theory adopted for the present study is based on the quasi-steady piston theory, and von-barman nonlinear strain-displacement relation is also applied. The passive suppression results for nonlinear panel flutter are obtained in the time domain using the Newmark-$\beta$ method. To achieve the best damping effect, optimal shape and location of fille piezoceramic (PZT) patches are determined by using genetic algorithms. The effects of passive suppression are investigated by employing in turn one shunt circuit and two independent shunt circuits. Feasibility studies show that two independent inductor-resistor shunt circuits suppresses flutter more effectively than a single shunt circuit. The results clearly demonstrate that the passive damping scheme that uses piezoelectric shunt circuit can effectively attenuate the flutter.

Real-time Semi-active Vibration Control in Cable-stayed Bridges by Shear-type MR damper and Clipped-optimal Control Algorithm (전단형 MR 댐퍼 및 Clipped-optimal 제어알고리즘을 이용한 사장교의 실시간 준능동 진동제어)

  • Heo, Gwanghee;Jeon, Joonryong;Jeon, Seunggon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.113-123
    • /
    • 2016
  • This paper is concerned with an experimental research to control of random vibration caused by external loads specially in cable-stayed bridges which tend to be structurally flexible. For the vibration control, we produced a model structure modelled on Seohae Grand Bridge, and we designed a shear type MR damper. On the center of its middle span, we placed a shear type MR damper which was to control its vibration and also acquire its structural responses such as displacement and acceleration at the same site. The experiments concerning controlling vibration were performed according to a variety of theories including un-control, passive on/off control, and clipped-optimal control. Its control performance was evaluated in terms of the absolute maximum displacements, RMS displacements, the absolute maximum accelerations, RMS accelerations, and the total power required to control the bridge which differ from each different experiment method. Among all the methods applied in this paper, clipped-optimal control method turned out to be the most effective to reduces of displacements, accelerations, and external power. Finally, It is proven that the clipped-optimal control method was effective and useful in the vibration control employing a semi-active devices such MR damper.