• Title/Summary/Keyword: optimal number of clusters

Search Result 79, Processing Time 0.026 seconds

Statistical methods for testing tumor heterogeneity (종양 이질성을 검정을 위한 통계적 방법론 연구)

  • Lee, Dong Neuck;Lim, Changwon
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.3
    • /
    • pp.331-348
    • /
    • 2019
  • Understanding the tumor heterogeneity due to differences in the growth pattern of metastatic tumors and rate of change is important for understanding the sensitivity of tumor cells to drugs and finding appropriate therapies. It is often possible to test for differences in population means using t-test or ANOVA when the group of N samples is distinct. However, these statistical methods can not be used unless the groups are distinguished as the data covered in this paper. Statistical methods have been studied to test heterogeneity between samples. The minimum combination t-test method is one of them. In this paper, we propose a maximum combinatorial t-test method that takes into account combinations that bisect data at different ratios. Also we propose a method based on the idea that examining the heterogeneity of a sample is equivalent to testing whether the number of optimal clusters is one in the cluster analysis. We verified that the proposed methods, maximum combination t-test method and gap statistic, have better type-I error and power than the previously proposed method based on simulation study and obtained the results through real data analysis.

Security Clustering Algorithm Based on Integrated Trust Value for Unmanned Aerial Vehicles Network

  • Zhou, Jingxian;Wang, Zengqi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1773-1795
    • /
    • 2020
  • Unmanned aerial vehicles (UAVs) network are a very vibrant research area nowadays. They have many military and civil applications. Limited bandwidth, the high mobility and secure communication of micro UAVs represent their three main problems. In this paper, we try to address these problems by means of secure clustering, and a security clustering algorithm based on integrated trust value for UAVs network is proposed. First, an improved the k-means++ algorithm is presented to determine the optimal number of clusters by the network bandwidth parameter, which ensures the optimal use of network bandwidth. Second, we considered variables representing the link expiration time to improve node clustering, and used the integrated trust value to rapidly detect malicious nodes and establish a head list. Node clustering reduce impact of high mobility and head list enhance the security of clustering algorithm. Finally, combined the remaining energy ratio, relative mobility, and the relative degrees of the nodes to select the best cluster head. The results of a simulation showed that the proposed clustering algorithm incurred a smaller computational load and higher network security.

Double K-Means Clustering (이중 K-평균 군집화)

  • 허명회
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.2
    • /
    • pp.343-352
    • /
    • 2000
  • In this study. the author proposes a nonhierarchical clustering method. called the "Double K-Means Clustering", which performs clustering of multivariate observations with the following algorithm: Step I: Carry out the ordinary K-means clmitering and obtain k temporary clusters with sizes $n_1$,... , $n_k$, centroids $c_$1,..., $c_k$ and pooled covariance matrix S. $\bullet$ Step II-I: Allocate the observation x, to the cluster F if it satisfies ..... where N is the total number of observations, for -i = 1, . ,N. $\bullet$ Step II-2: Update cluster sizes $n_1$,... , $n_k$, centroids $c_$1,..., $c_k$ and pooled covariance matrix S. $\bullet$ Step II-3: Repeat Steps II-I and II-2 until the change becomes negligible. The double K-means clustering is nearly "optimal" under the mixture of k multivariate normal distributions with the common covariance matrix. Also, it is nearly affine invariant, with the data-analytic implication that variable standardizations are not that required. The method is numerically demonstrated on Fisher's iris data.

  • PDF

Hybrid Self Organizing Map using Monte Carlo Computing

  • Jun Sung-Hae;Park Min-Jae;Oh Kyung-Whan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.381-384
    • /
    • 2006
  • Self Organizing Map(SOM) is a powerful neural network model for unsupervised loaming. In many clustering works with exploratory data analysis, it has been popularly used. But it has a weakness which is the poorly theoretical base. A lot more researches for settling the problem have been published. Also, our paper proposes a method to overcome the drawback of SOM. As compared with the presented researches, our method has a different approach to solve the problem. So, a hybrid SOM is proposed in this paper. Using Monte Carlo computing, a hybrid SOM improves the performance of clustering. We verify the improved performance of a hybrid SOM according to the experimental results using UCI machine loaming repository. In addition to, the number of clusters is determined by our hybrid SOM.

  • PDF

A Selection Method of an Optimal Number of Clusters Using a Fuzzy Cluster Validity Measure (퍼지 클러스터 타당성 척도를 이용한 최적 클러스터 수의 선택방법)

  • 이현숙;오경환
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.133-136
    • /
    • 1996
  • 클러스터의 타당성 정도를 계산하기 위한 측정자로서, 퍼지 분할된 데이터의 서로 다른 클래스 사이의 분리성과 한 클래스안에서의 밀접성의 비율, G를 정의하였다. 본 논문에서는 이렇게 정의된 G로부터, 각 클러스터가 가지는 데이터 수의 차이점을 고려하여 하나의 데이터 집합에 대하여 서로 다른 분할들을 비교할 수 있도록 하기 위하여, IG를 재정의하였다. 기존의 클러스터 타당성 전략은 클러스터 수의 함수로서, 주어진 척도의 값을 계산하여 기록한 후 그 값의 변화가 가장 큰 경우를 최적의 클러스터의 수로서 선택하였다. 이때 그 값의 변화를 고려하기 위한 주관적인 해석이 필요하게 된다. 본 논문에서는 주관적인 해석 없이 IG를 이용하여 최적의 클러스터 수를 결정하기 위한 방법을 제안하고자 한다. 제안된 방법은 널리 알려진 Iris data와 서로 다른 클러스터 인구수를 가지는 가상의 데이터 집합에 적용하여 그 타당성을 보인다.

  • PDF

Validation-based Clustering Algorithm (유효성 기반 군집화 알고리즘)

  • ;R.S. Ramakrishna
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.19-21
    • /
    • 2003
  • 본 논문에서는 군집화의 가장 중요한 2가지 문제에 대한 새로운 해결책을 제시한다. 첫 번째 문제는 두 객체가 하나의 군집내에 포함될 수 있는지를 결정하는 유사 결정으로써, 이를 해결하기 위해 군집 유효화 지수에 기반한 유사 결정 기법을 제안한다. 이 기법은 정성적인 인지 과정을 정량적인 비교 결정 과정으로 바꾼다 이 기법은 본 논문에서 제안한 랜덤 군집화와 전체 군집화의 두 부분으로 구성된 유효성 기반 군집화 알고리즘의 핵심을 이루며. 기존의 않은 군집화 알고리즘에서 요구되는 복잡한 파라미터를 결정할 필요가 없어지도록 한다. 두 번째 문제는 최적 군집 수 (optimal number of clusters)를 찾는 것으로써, 이것 또한 앞에서 제안한 기법에 의해서 전체 군집화에서 찾을 수 있다. 마지막으로 제안한 기법과 군집화 알고리즘의 효용성 및 효율성을 보여주는 실험 결과가 제시된다.

  • PDF

Improving CMD Areal Density Analysis: Algorithms and Strategies

  • Wilson, R.E.
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.121-130
    • /
    • 2014
  • Essential ideas, successes, and difficulties of Areal Density Analysis (ADA) for color-magnitude diagrams (CMD's) of resolved stellar populations are examined, with explanation of various algorithms and strategies for optimal performance. A CMD-generation program computes theoretical datasets with simulated observational error and a solution program inverts the problem by the method of Differential Corrections (DC) so as to compute parameter values from observed magnitudes and colors, with standard error estimates and correlation coefficients. ADA promises not only impersonal results, but also significant saving of labor, especially where a given dataset is analyzed with several evolution models. Observational errors and multiple star systems, along with various single star characteristics and phenomena, are modeled directly via the Functional Statistics Algorithm (FSA). Unlike Monte Carlo, FSA is not dependent on a random number generator. Discussions include difficulties and overall requirements, such as need for fast evolutionary computation and realization of goals within machine memory limits. Degradation of results due to influence of pixelization on derivatives, Initial Mass Function (IMF) quantization, IMF steepness, low Areal Densities ($\mathcal{A}$), and large variation in $\mathcal{A}$ are reduced or eliminated through a variety of schemes that are explained sufficiently for general application. The Levenberg-Marquardt and MMS algorithms for improvement of solution convergence are contained within the DC program. An example of convergence, which typically is very good, is shown in tabular form. A number of theoretical and practical solution issues are discussed, as are prospects for further development.

Comparative Analysis for Clustering Based Optimal Vehicle Routes Planning (클러스터링 기반의 최적 차량 운행 계획 수립을 위한 비교연구)

  • Kim, Jae-Won;Shin, KwangSup
    • The Journal of Bigdata
    • /
    • v.5 no.1
    • /
    • pp.155-180
    • /
    • 2020
  • It takes the most important role the problem of assigining vehicles and desigining optimal routes for each vehicle in order to enhance the logistics service level. While solving the problem, various cost factors such as number of vehicles, the capacity of vehicles, total travelling distance, should be considered at the same time. Although most of logistics service providers introduced the Transportation Management System (TMS), the system has the limitation which can not consider the practical constraints. In order to make the solution of TMS applicable, it is required experts revised the solution of TMS based on their own experience and intuition. In this research, different from previous research which have focused on minimizing the total cost, it has been proposed the methodology which can enhance the efficiency and fairness of asset utilization, simultaneously. First of all, it has been adopted the Cluster-First Route-Second (CFRS) approach. Based on the location of customers, we have grouped customers as clusters by using four different clustering algorithm such as K-Means, K-Medoids, DBSCAN, Model-based clustering and a procedural approach, Fisher & Jaikumar algorithm. After getting the result of clustering, it has been developed the optiamal vehicle routes within clusters. Based on the result of numerical experiments, it can be said that the propsed approach based on CFRS may guarantee the better performance in terms of total travelling time and distance. At the same time, the variance of travelling distance and number of visiting customers among vehicles, it can be concluded that the proposed approach can guarantee the better performance of assigning tasks in terms of fairness.

A Study of Post-processing Methods of Clustering Algorithm and Classification of the Segmented Regions (클러스터링 알고리즘의 후처리 방안과 분할된 영역들의 분류에 대한 연구)

  • Oh, Jun-Taek;Kim, Bo-Ram;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.16B no.1
    • /
    • pp.7-16
    • /
    • 2009
  • Some clustering algorithms have a problem that an image is over-segmented since both the spatial information between the segmented regions is not considered and the number of the clusters is defined in advance. Therefore, they are difficult to be applied to the applicable fields. This paper proposes the new post-processing methods, a reclassification of the inhomogeneous clusters and a region merging using Baysian algorithm, that improve the segmentation results of the clustering algorithms. The inhomogeneous cluster is firstly selected based on variance and between-class distance and it is then reclassified into the other clusters in the reclassification step. This reclassification is repeated until the optimal number determined by the minimum average within-class distance. And the similar regions are merged using Baysian algorithm based on Kullbeck-Leibler distance between the adjacent regions. So we can effectively solve the over-segmentation problem and the result can be applied to the applicable fields. Finally, we design a classification system for the segmented regions to validate the proposed method. The segmented regions are classified by SVM(Support Vector Machine) using the principal colors and the texture information of the segmented regions. In experiment, the proposed method showed the validity for various real-images and was effectively applied to the designed classification system.

Natural Scene Text Binarization using Tensor Voting and Markov Random Field (텐서보팅과 마르코프 랜덤 필드를 이용한 자연 영상의 텍스트 이진화)

  • Choi, Hyun Su;Lee, Guee Sang
    • Smart Media Journal
    • /
    • v.4 no.4
    • /
    • pp.18-23
    • /
    • 2015
  • In this paper, we propose a method for detecting the number of clusters. This method can improve the performance of a gaussian mixture model function in conventional markov random field method by using the tensor voting. The key point of the proposed method is that extracts the number of the center through the continuity of saliency map of the input data of the tensor voting token. At first, we separate the foreground and background region candidate in a given natural images. After that, we extract the appropriate cluster number for each separate candidate regions by applying the tensor voting. We can make accurate modeling a gaussian mixture model by using a detected number of cluster. We can return the result of natural binary text image by calculating the unary term and the pairwise term of markov random field. After the experiment, we can confirm that the proposed method returns the optimal cluster number and text binarization results are improved.