• Title/Summary/Keyword: optimal network model

Search Result 1,028, Processing Time 0.036 seconds

Optimal Design of Irrigation Pipe Network with Multiple Sources

  • Lyu, Heui-Jeong;Ahn, Tae-Jin
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.2
    • /
    • pp.9-18
    • /
    • 1997
  • Abstract This paper presents a heuristic method for optimal design of water distribution system with multiple sources and potential links. In multiple source pipe network, supply rate at each source node affects the total cost of the system because supply rates are not uniquely determined. The Linear Minimum Cost Flow (LMCF) model may be used to a large scale pipe network with multiple sources to determine supply rate at each source node. In this study the heuristic method based on the LMCF is suggested to determine supply rate at each source node and then to optimize the given layout. The heuristic method in turn perturbs links in the longest path of the network to obtain the supply rates which make the optimal design of the pipe network. Once the best tree network is obtained, the frequency count of reconnecting links by considering link failure is in turn applied to form loop to enhance the reliability of the best tree network. A sample pipe network is employed to test the proposed method. The results show that the proposed method can yield a lower cost design than the LMCF alone and that the proposed method can be efficiently used to design irrigation systems or rural water distribution systems.

  • PDF

Optimal Network Design for the Estimation of Areal Rainfall (면적강우량 산정을 위한 관측망 최적설계 연구)

  • Lee, Jae-Hyeong;Yu, Yang-Gyu
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.2
    • /
    • pp.187-194
    • /
    • 2002
  • To improve the accuracy of the areal rainfall estimates over a river basin, the optimal design method of rainfall network was studied using the stochastic characteristics of measured rainfall data. The objective function was constructed with the estimation error of areal rainfall and observation cost of point rainfall and the observation sites with minimum objective function value were selected as the optimal network. As a stochastic variance estimator, kriging model was selected to minimize the error terms. The annual operation cost including the installation cost was considered as the cost terms and an accuracy equivalent parameter was used to combine the error and cost terms. The optimal design method of rainfall network was studied in the Yongdam dam basin whose raingauge numbers need to be enlarged for the optimal rainfall networks of the basin.

Analysis of flow change in optimal sewer networks for rainfall characteristics (강우특성별 최적 우수관망에서의 유출 변화 분석)

  • Lee, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1976-1981
    • /
    • 2011
  • In this study, the optimal sewer layout model(Lee, J.H., 2010)[1] was applied to verify the reduction effect of urban inundation in the optimal sewer networks, which designed by this optimal model, for various artificial rainfall events in urban areas. Then the optimal model was developed by Lee, J.H. to minimize the peak outflow at outlet in sewer network. The applied rainfall events are two types. One is the rainfall event which the double peak occurs between specific time distance continuously. The other is the continuous rainfall event with specific rainfall intensity. As the result, in two applied rainfall types, the peak outflows at outlet were reduced in the optimal sewer networks which designed the optimal sewer layout model of Lee, J.H.. Therefore, the peak outflow is reduced because the inflows at each manhole are distributed in the whole sewer networks, it's not delay of inflows by this optimal model.

An Artificial Neural Network for the Optimal Path Planning (최적경로탐색문제를 위한 인공신경회로망)

  • Kim, Wook;Park, Young-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.333-336
    • /
    • 1991
  • In this paper, Hopfield & Tank model-like artificial neural network structure is proposed, which can be used for the optimal path planning problems such as the unit commitment problems or the maintenance scheduling problems which have been solved by the dynamic programming method or the branch and bound method. To construct the structure of the neural network, an energy function is defined, of which the global minimum means the optimal path of the problem. To avoid falling into one of the local minima during the optimization process, the simulated annealing method is applied via making the slope of the sigmoid transfer functions steeper gradually while the process progresses. As a result, computer(IBM 386-AT 34MHz) simulations can finish the optimal unit commitment problem with 10 power units and 24 hour periods (1 hour factor) in 5 minites. Furthermore, if the full parallel neural network hardware is contructed, the optimization time will be reduced remarkably.

  • PDF

Signal Control and Dynamic Route Guidance in ITS (지능형 교통체계에서의 신호제어와 동적 경로안내)

  • 박윤선
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.50
    • /
    • pp.333-340
    • /
    • 1999
  • An ideal traffic control system should consider simultaneously both route guidance of vehicles and signal policies at intersection of a traffic network. It is known that an iterative procedure gives an optimal route to each vehicle in the network. This paper presents an iterative procedure to find an optimal signal plan for the network. We define the optimal solution as a signal equilibrium. From the definition of signal equilibrium, we prove that the fixed point solution of the iterative procedure is a signal equilibrium, when optimal signal algorithms are implemented at each intersection of the network. A combined model of route guidance and signal planning is also suggested by relating the route guidance procedure and the signal planning procedure into a single loop iterative procedure.

  • PDF

Pareto RBF network ensemble using multi-objective evolutionary computation

  • Kondo, Nobuhiko;Hatanaka, Toshiharu;Uosaki, Katsuji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.925-930
    • /
    • 2005
  • In this paper, evolutionary multi-objective selection method of RBF networks structure is considered. The candidates of RBF network structure are encoded into the chromosomes in GAs. Then, they evolve toward Pareto-optimal front defined by several objective functions concerning with model accuracy and model complexity. An ensemble network constructed by such Pareto-optimal models is also considered in this paper. Some numerical simulation results indicate that the ensemble network is much robust for the case of existence of outliers or lack of data, than one selected in the sense of information criteria.

  • PDF

Improving Network Utilization in FlexRay Using Reallocation of Static Message (정적 메시지 재할당을 이용한 FlexRay 네트워크 사용효율 개선 기법)

  • Seo, Byungseok;Jin, Sungho;Lee, Dongik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.113-120
    • /
    • 2013
  • This paper presents a mathematical model to determine the optimal length of static messages that can achieve more efficient use of a FlexRay network. In order to determine the optimal length of static message, the proposed model evaluates the given set of messages with respect to a network utilization index, which is defined in this work. The efficient use of a FlexRay network is achieved by reallocating any static message whose length is equal or greater than the resulting value to the dynamic segment. The effectiveness of the proposed method is investigated by applying to the SAE benchmark data.

Development of Optimal Decision-Making System for Rehabilitation of Water Distribution Systems Divided by small Division (상수관망의 구역별 최적개량 의사결정 시스템의 개발)

  • Baek Chun-Woo;Kim Seok-Woo;Kim Eung-Seok;Kim Joong-Hoon;Park Moo-Jong
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.6 s.167
    • /
    • pp.545-552
    • /
    • 2006
  • The purpose of this study is to develop an optimal, long-term planning model for improvement of water distribution networks. The water distribution system is divided into sub-zones and the decision of improvement plan is made for each sub-zone. Costs for replacement, rehabilitation and repair, benefits including reduced pumping and leakage costs, and hydraulic reliability are considered to make optimal decision for improvement planning of water network. Harmony search algorithm is applied to optimize the system and hydraulic analysis model EPANET is interfaced with the optimal decision model to check the hydraulic reliability, The developed model is applied to actual water distribution system in Daegu-city, South Korea. The new model which use durability, conveyance and cost as a decision variable is different from existing methods which use only burying period and pipe type and can be used as optimal decision making system for water distribution network.

A Study on the Regionalization of the Municipal Solid Waste Management System Using a Mathematical Programming Model (수리계획모형을 활용한 대도시 폐기물 관리 시스템의 광역화 운영 계획에 관한 연구)

  • 김재희;김승권;이용대
    • Korean Management Science Review
    • /
    • v.20 no.1
    • /
    • pp.65-76
    • /
    • 2003
  • The increased environmental concerns and the emphasis on recycling are gradually shifting the orientation of municipal solid waste (MSW) management. This paper is designed to evaluate regionalization programs for MSW management system. We developed a mixed intiger network programming (MIP) model to identify environment-friendly, cost-effective expansion plans for regionalization scenarios considered. The MIP model is a dynamic capacity expansion model based on the network flow model that depicts the MSW management cycle. In particular, our model is designed to determine the optimal form of regionalization using binary variables. We apply this model to assess the regionalization program of Seoul Metropolitan City, which includes three scenarios such as 1) districting, 2) regionalization with neighboring self-governing districts, and 3) g1obalization with all districts. We demonstrate how our model can be used to plan the MSW system. The results indicate that optimal regionalization with nearby self-governing districts can eliminate unnecessary landfills and expansions if jurisdictional obstacles are removed.

Establishment and Application of Neuro-Fuzzy Real-Time Flood Forecasting Model by Linking Takagi-Sugeno Inference with Neural Network (I) : Selection of Optimal Input Data Combinations (Takagi-Sugeno 추론기법과 신경망을 연계한 뉴로-퍼지 홍수예측 모형의 구축 및 적용 (I) : 최적 입력자료 조합의 선정)

  • Choi, Seung-Yong;Kim, Byung-Hyun;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.7
    • /
    • pp.523-536
    • /
    • 2011
  • The objective of this study is to develop the data driven model for the flood forecasting that are improved the problems of the existing hydrological model for flood forecasting in medium and small streams. Neuro-Fuzzy flood forecasting model which linked the Takagi-Sugeno fuzzy inference theory with neural network, that can forecast flood only by using the rainfall and flood level and discharge data without using lots of physical data that are necessary in existing hydrological rainfall-runoff model is established. The accuracy of flood forecasting using this model is determined by temporal distribution and number of used rainfall and water level as input data. So first of all, the various combinations of input data were constructed by using rainfall and water level to select optimal input data combination for applying Neuro-Fuzzy flood forecasting model. The forecasting results of each combination are compared and optimal input data combination for real-time flood forecasting is determined.