• Title/Summary/Keyword: optimal fossil fuel mix

Search Result 3, Processing Time 0.018 seconds

A Study on Construction of an Optimal Fossil Fuel Mix: A Portfolio-Based Approach (평균-분산 모형을 이용한 화석에너지원 소비조합 구성에 관한 연구)

  • Cha, Kyungsoo
    • Environmental and Resource Economics Review
    • /
    • v.20 no.2
    • /
    • pp.335-356
    • /
    • 2011
  • In this paper, we attempted to suggest a way to evaluate appropriateness and efficiency for the energy consumption structure. For this, based on Markowitz (1952)' mean-variance portfolio model, we constructed an optimal fossil fuel mix. In constructing the optimal mix, we first defined returns on fossil fuels (oil, coal and natural gas) as TOE (Ton of Oil Equivalent) per $1. Then, by using the dynamic latent common factor model, we decomposed the growth rates of the returns on each fossil fuel into two parts : the common part and the idiosyncratic part. Finally, based on the results from the dynamic latent common factor model, we constructed the optimal fossil fuel mix implied by the mean-variance portfolio model. Our results indicate that for the fossil fuel mix to be on the efficient frontier, it is crucial to reduce oil consumption as low as possible. Moreover, our results imply that it is more efficient to increase natural gas consumption rather than coal consumption in reducing oil consumption. These results are in line with the strategies for the future energy consumption structure pursued by Korea and indicate that reduction in oil use can improve overall efficiency in energy consumption.

  • PDF

Calculation of Optimal Fuel Mix Considering Emission Trading on Electricity Market (배출권거래효과를 반영한 적정 전원실비구성비 산출)

  • Kim, Bal-Ho;Kang, Dong-Joo;Kim, Cha-Keun;Kim, Hak-Man
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.5
    • /
    • pp.50-57
    • /
    • 2009
  • The Kyoto Protocol finally entered into force in 2008. In this respect, it is imperative to explore different options to reduce greenhouse gas emissions for developing countries under the framework of the Kyoto Protocol. One of the main sources of $CO_2$ gas emission is fossil fueled power plants, thereby emission reduction could be achieved by substituting fossil fuel by non-fossil fuel sources on electric power generation sector. This paper presents the method for evaluating the effectiveness of emissions trading by fuel mix change. The cost of Fuel mix is formulated considering the economic effects of emission trading in electricity market. And the optimal fuel mix is proposed under the given emission constraints.

A Study on the GENCO Adaptive Strategy for the Greenhouse Gas Mitigation Policy (온실가스 감축정책에 따른 발전사업자의 대응 방안에 관한 연구)

  • Choi, Dong-Chan;Han, Seok-Man;Kim, Bal-Ho H.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.522-533
    • /
    • 2012
  • This paper presents an adaptive strategy of GENCOs for reducing the greenhouse gas by fuel mix change. Fuel mix stands for generation capacity portfolio composed of different fuel resources. Currently, the generation sector of power industry in Korea is heavily dependent on fossil fuels, therefore it is required to change the fuel mix gradually into more eco-friendly way based on renewable energies. The generation costs of renewable energies are still expensive compared to fossil fueled resources. This is why the adaptive change is more preferred at current stage and this paper proposes an optimal strategy for capacity planning based on multiple environmental scenarios on the time horizon. This study used the computer program tool named GATE-PRO (Generation And Transmission Expansion PROgram), which is a mixed-integer non-linear program developed by Hongik university and Korea Energy Economics Institute. The simulations have been carried out with the priority allocation method in the program to determine the optimal mix of NRE(New Renewable Energy). Through this process, the result proposes an economic fuel mix under emission constraints compatible with the greenhouse gas mitigation policy of the United Nations.