• 제목/요약/키워드: optimal error estimates

검색결과 118건 처리시간 0.022초

A CONSISTENT DISCONTINUOUS BUBBLE SCHEME FOR ELLIPTIC PROBLEMS WITH INTERFACE JUMPS

  • KWONG, IN;JO, WANGHYUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제24권2호
    • /
    • pp.143-159
    • /
    • 2020
  • We propose a consistent numerical method for elliptic interface problems with nonhomogeneous jumps. We modify the discontinuous bubble immersed finite element method (DB-IFEM) introduced in (Chang et al. 2011), by adding a consistency term to the bilinear form. We prove optimal error estimates in L2 and energy like norm for this new scheme. One of the important technique in this proof is the Bramble-Hilbert type of interpolation error estimate for discontinuous functions. We believe this is a first time to deal with interpolation error estimate for discontinuous functions. Numerical examples with various interfaces are provided. We observe optimal convergence rates for all the examples, while the performance of early DB-IFEM deteriorates for some examples. Thus, the modification of the bilinear form is meaningful to enhance the performance.

A STABILIZED CHARACTERISTIC FINITE VOLUME METHOD FOR TRANSIENT NAVIER-STOKES EQUATIONS

  • Zhang, Tong
    • Journal of applied mathematics & informatics
    • /
    • 제29권5_6호
    • /
    • pp.1205-1219
    • /
    • 2011
  • In this work, a stabilized characteristic finite volume method for the time-dependent Navier-Stokes equations is investigated based on the lowest equal-order finite element pair. The temporal differentiation and advection term are dealt with by characteristic scheme. Stability of the numerical solution is derived under some regularity assumptions. Optimal error estimates of the velocity and pressure are obtained by using the relationship between the finite volume and finite element methods.

ON THREE SPECTRAL REGULARIZATION METHODS FOR A BACKWARD HEAT CONDUCTION PROBLEM

  • Xiong, Xiang-Tuan;Fu, Chu-Li;Qian, Zhi
    • 대한수학회지
    • /
    • 제44권6호
    • /
    • pp.1281-1290
    • /
    • 2007
  • We introduce three spectral regularization methods for solving a backward heat conduction problem (BHCP). For the three spectral regularization methods, we give the stability error estimates with optimal order under an a-priori and an a-posteriori regularization parameter choice rule. Numerical results show that our theoretical results are effective.

ERROR ESTIMATE OF EXTRAPOLATED DISCONTINUOUS GALERKIN APPROXIMATIONS FOR THE VISCOELASTICITY TYPE EQUATION

  • Ohm, Mi-Ray;Lee, Hyun-Yong;Shin, Jun-Yong
    • Journal of applied mathematics & informatics
    • /
    • 제29권1_2호
    • /
    • pp.311-326
    • /
    • 2011
  • In this paper, we adopt discontinuous Galerkin methods with penalty terms namely symmetric interior penalty Galerkin methods, to solve nonlinear viscoelasticity type equations. We construct finite element spaces and define an appropriate projection of u and prove its optimal convergence. We construct extrapolated fully discrete discontinuous Galerkin approximations for the viscoelasticity type equation and prove ${\ell}^{\infty}(L^2)$ optimal error estimates in both spatial direction and temporal direction.

THE h × p FINITE ELEMENT METHOD FOR OPTIMAL CONTROL PROBLEMS CONSTRAINED BY STOCHASTIC ELLIPTIC PDES

  • LEE, HYUNG-CHUN;LEE, GWOON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제19권4호
    • /
    • pp.387-407
    • /
    • 2015
  • This paper analyzes the $h{\times}p$ version of the finite element method for optimal control problems constrained by elliptic partial differential equations with random inputs. The main result is that the $h{\times}p$ error bound for the control problems subject to stochastic partial differential equations leads to an exponential rate of convergence with respect to p as for the corresponding direct problems. Numerical examples are used to confirm the theoretical results.

A CHARACTERISTICS-MIXED FINITE ELEMENT METHOD FOR BURGERS' EQUATION

  • Chen, Huanzhen;Jiang, Ziwen
    • Journal of applied mathematics & informatics
    • /
    • 제15권1_2호
    • /
    • pp.29-51
    • /
    • 2004
  • In this paper, we propose a new mixed finite element method, called the characteristics-mixed method, for approximating the solution to Burgers' equation. This method is based upon a space-time variational form of Burgers' equation. The hyperbolic part of the equation is approximated along the characteristics in time and the diffusion part is approximated by a mixed finite element method of lowest order. The scheme is locally conservative since fluid is transported along the approximate characteristics on the discrete level and the test function can be piecewise constant. Our analysis show the new method approximate the scalar unknown and the vector flux optimally and simultaneously. We also show this scheme has much smaller time-truncation errors than those of standard methods. Numerical example is presented to show that the new scheme is easily implemented, shocks and boundary layers are handled with almost no oscillations. One of the contributions of the paper is to show how the optimal error estimates in $L^2(\Omega)$ are obtained which are much more difficult than in the standard finite element methods. These results seem to be new in the literature of finite element methods.

FINITE ELEMENT APPROXIMATION OF THE DISCRETE FIRST-ORDER SYSTEM LEAST SQUARES FOR ELLIPTIC PROBLEMS

  • SHIN, Byeong-Chun
    • 대한수학회논문집
    • /
    • 제20권3호
    • /
    • pp.563-578
    • /
    • 2005
  • In [Z. Cai and B. C. Shin, SIAM J. Numer. Anal. 40 (2002), 307-318], we developed the discrete first-order system least squares method for the second-order elliptic boundary value problem by directly approximating $H(div){\cap}H(curl)-type$ space based on the Helmholtz decomposition. Under general assumptions, error estimates were established in the $L^2\;and\;H^1$ norms for the vector and scalar variables, respectively. Such error estimates are optimal with respect to the required regularity of the solution. In this paper, we study solution methods for solving the system of linear equations arising from the discretization of variational formulation which possesses discrete biharmonic term and focus on numerical results including the performances of multigrid preconditioners and the finite element accuracy.

ERROR ESTIMATES OF SEMIDISCRETE DISCONTINUOUS GALERKIN APPROXIMATIONS FOR THE VISCOELASTICITY-TYPE EQUATION

  • Ohm, Mi-Ray;Lee, Hyun-Young;Shin, Jun-Yong
    • 대한수학회보
    • /
    • 제49권4호
    • /
    • pp.829-850
    • /
    • 2012
  • In this paper, we adopt symmetric interior penalty discontinuous Galerkin (SIPG) methods to approximate the solution of nonlinear viscoelasticity-type equations. We construct finite element space which consists of piecewise continuous polynomials. We introduce an appropriate elliptic-type projection and prove its approximation properties. We construct semidiscrete discontinuous Galerkin approximations and prove the optimal convergence in $L^2$ normed space.

A DISCRETE FINITE ELEMENT GALERKIN METHOD FOR A UNIDIMENSIONAL SINGLE-PHASE STEFAN PROBLEM

  • Lee, Hyun-Young
    • Journal of applied mathematics & informatics
    • /
    • 제16권1_2호
    • /
    • pp.165-181
    • /
    • 2004
  • Based on Landau-type transformation, a Stefan problem with non-linear free boundary condition is transformed into a system consisting of parabolic equation and the ordinary differential equations. Semidiscrete approximations are constructed. Optimal orders of convergence of semidiscrete approximation in $L_2$, $H^1$ and $H^2$ normed spaces are derived.

수학교과의 동형고사 문항에서 양호도 향상에 유효한 최적정답율 산정에 관한 연구 (Study on Estimating the Optimal Number-right Score in Two Equivalent Mathematics-test by Linear Score Equating)

  • 홍석강
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제37권1호
    • /
    • pp.1-13
    • /
    • 1998
  • In this paper, we have represented the efficient way how to enumerate the optimal number-right scores to adjust the item difficulty and to improve item discrimination. To estimate the optimal number-right scores in two equivalent math-tests by linear score equating a measurement error model was applied to the true scores observed from a pair of equivalent math-tests assumed to measure same trait. The model specification for true scores which is represented by the bivariate model is a simple regression model to inference the optimal number-right scores and we assume again that the two simple regression lines of raw scores and true scores are independent each other in their error models. We enumerated the difference between mean value of $\chi$* and ${\mu}$$\_$$\chi$/ and the difference between the mean value of y*and a+b${\mu}$$\_$$\chi$/ by making an inference the estimates from 2 error variable regression model. Furthermore, so as to distinguish from the original score points, the estimated number-right scores y’$\^$*/ as the estimated regression values of true scores with the same coordinate were moved to center points that were composed of such difference values with result of such parallel score moving procedure as above mentioned. We got the asymptotically normal distribution in Figure 5 that was represented as the optimal distribution of the optimal number-right scores so that we could decide the optimal proportion of number-right score in each item. Also by assumption that equivalence of two tests is closely connected to unidimensionality of a student’s ability. we introduce new definition of trait score to evaluate such ability in each item. In this study there are much limitations in getting the real true scores and in analyzing data of the bivariate error model. However, even with these limitations we believe that this study indicates that the estimation of optimal number right scores by using this enumeration procedure could be easily achieved.

  • PDF