• 제목/요약/키워드: optimal damping ratio

검색결과 80건 처리시간 0.023초

A simple damper optimization algorithm for both target added damping ratio and interstorey drift ratio

  • Aydin, Ersin
    • Earthquakes and Structures
    • /
    • 제5권1호
    • /
    • pp.83-109
    • /
    • 2013
  • A simple damper optimization method is proposed to find optimal damper allocation for shear buildings under both target added damping ratio and interstorey drift ratio (IDR). The damping coefficients of added dampers are considered as design variables. The cost, which is defined as the sum of damping coefficient of added dampers, is minimized under a target added damping ratio and the upper and the lower constraint of the design variables. In the first stage of proposed algorithm, Simulated Annealing, Nelder Mead and Differential Evolution numerical algorithms are used to solve the proposed optimization problem. The candidate optimal design obtained in the first stage is tested in terms of the IDRs using linear time history analyses for a design earthquake in the second stage. If all IDRs are below the allowable level, iteration of the algorithm is stopped; otherwise, the iteration continues increasing the target damping ratio. By this way, a structural response IDR is also taken into consideration using a snap-back test. In this study, the effects of the selection of upper limit for added dampers, the storey mass distribution and the storey stiffness distribution are all investigated in terms of damper distributions, cost function, added damping ratio and IDRs for 6-storey shear building models. The results of the proposed method are compared with two existing methods in the literature. Optimal designs are also compared with uniform designs according to both IDRs and added damping ratios. The numerical results show that the proposed damper optimization method is easy to apply and is efficient to find optimal damper distribution for a target damping ratio and allowable IDR value.

기반의 조화운동을 받는 감쇠선형진동계의 최적 복합동흡진기에 관한 연구 (A Study on Optimal Multi-dynamic Absorber of Damped Linear Vibration System under the Harmonic Motion of the Base)

  • 안찬우;김동영;홍도관
    • 소음진동
    • /
    • 제10권2호
    • /
    • pp.325-330
    • /
    • 2000
  • A dynamic absorber is used to protect the primary vibration system under the steady-state harmonic disturbance. In a number of cases it appears expedient to install several absorbers of smaller masses instead of one. This may be due to the need of distribute the absorber's response along the construction, restrictions on the absorber's installation. So, we studied characteristics of the primary vibration system for the optimal natural frequency ratio and the optimal damping ratio of serial multi-dynamic absorber. Also we obtained the optimum values of the serial multi-dynamic absorber parameters using computer simulation for the damped primary vibration system. In designing multi-dynamic absorber, we presented for the optimal natural frequency and the optimal damping ratio of multi-dynamic absorbers.

  • PDF

Optimal shape of LCVA for vibration control of structures subjected to along wind excitation

  • Park, Ji-Hun;Min, Kyung-Won
    • Smart Structures and Systems
    • /
    • 제10권6호
    • /
    • pp.573-591
    • /
    • 2012
  • In this study, a procedure to design an optimal LCVA that maximizes the equivalent damping ratio added to the primary structure subjected to along-wind excitation is proposed. That design procedure does not only consider the natural frequency and damping ratio of the LCVA, but also the proportion of the U-shaped liquid, which is closely related to the participation ratio of the liquid mass in inertial force. In addition, constraints to ensure the U-shape of the liquid are considered in the design process, so that suboptimal solutions that violate the optimal tuning law partly are adopted as a candidate of the optimal LCVA. The proposed design procedure of the LCVA is applied to the control of the 76-story benchmark building, and the optimal proportions of the liquid shape under various design conditions are compared.

지진응답제어를 위한 동조질량감쇠기의 최적설계지수(단단한 지반) (Optimal Parameter of Tuned Mass Damper for Controlling Seismic Response)

  • 이정우;우성식;이상현;정란
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.97-100
    • /
    • 2006
  • This study performed numerical analysis for obtaining optimal frequency and damping ratio of tuned mass damper (TMD) using 20 seismic loads measured at rock site. The structures of $1{\sim}2$ second natural period were considered, and optimal frequency and damping ratio were estimated for different mass ratio in terms of displacement and absolute acceleration response control. Numerical results showed that the values of the optimal parameters were different those from previous study by Hartog.

  • PDF

Optimal damping ratio of TLCDs

  • Chen, Yung-Hsiang;Chao, Chen-Chi
    • Structural Engineering and Mechanics
    • /
    • 제9권3호
    • /
    • pp.227-240
    • /
    • 2000
  • The study of the optimal damping ratio of a tuned liquid-column damper (or TLCD) attached to a single-degree-of-freedom system is presented. The tuned liquid-column damper is composed of two vertical columns connected by a horizontal section in the bottom and partially filled with water. The ratio of the length of the horizontal section to the effective wetted length of a TLCD considered as another important parameter is also presented for investigation. A simple pendulum-like model test is conducted to simulate a long-period motion in order to prove the effectiveness of TLCD for vibrational control. Comparisons of the experimental and analytic results of the TLCD, TLD (tuned-liquid damper), and TMD (tuned-mass damper) are included for discussion.

Seismic behavior of isolated bridges with additional damping under far-field and near fault ground motion

  • Losanno, Daniele;Hadad, Houman A.;Serino, Giorgio
    • Earthquakes and Structures
    • /
    • 제13권2호
    • /
    • pp.119-130
    • /
    • 2017
  • This paper presents a numerical investigation on the seismic behavior of isolated bridges with supplemental viscous damping. Usually very large displacements make seismic isolation an unfeasible solution due to boundary conditions, especially in case of existing bridges or high risk seismic regions. First, a suggested optimal design procedure is introduced, then seismic performance of three real bridges with different isolation systems and damping levels is investigated. Each bridge is studied in four different configurations: simply supported (SSB), isolated with 10% damping (IB), isolated with 30% damping (LRB) and isolated with optimal supplemental damping ratio (IDB). Two of the case studies are investigated under spectrum compatible far-field ground motions, while the third one is subjected to near-fault strong motions. With respect to different design strategies proposed by other authors, results of the analysis demonstrated that an isolated bridge equipped with HDLRBs and a total equivalent damping ratio of 70% represents a very effective design solution. Thanks to confirmed effective performance in terms of base shear mitigation and displacement reduction under both far field and near fault ground motions, as well as for both simply supported and continuous bridges, the suggested control system provides robustness and reliability in terms of seismic performance also resulting cost effective.

선형동흡진기의 매개변수가 감쇠진동계의 진동특성에 미치는 영향 (Effects of parameters of a linear dynamic vibration absorber on the vibrational characteristics of damped vibrational systems)

  • 윤장상;이양우;송창섭
    • 한국정밀공학회지
    • /
    • 제6권4호
    • /
    • pp.136-144
    • /
    • 1989
  • This paper presents the vibrational characteristics of linear damped vibrational systems with a linear dynamic absorber. The amplitude ratios of main vibrational system are derived from the equation of motion for the system, and optimal natural frequency ratio and damping ratio of dynamic absorber are obtained by computer simu- lation, which minimize the amplitude ratio of main vibrational system for the whole range of the frequency ratio. And, the effects of the parameters on the amplitude ratios are investigated. As the results, the effect of the natural frequency ratio on the amplitude ratio of main vibrational system is more important than that of the damping ratio of dynamic absorber as damping ratio of main vibrational system becomes larger. For the case of large damping ration of main vibrational system becomes larger. For the case of large damping ratio of main vibration system, the amplitude ratios are not decreased dramationally in spite of inoreasing mass ratio.

  • PDF

Vibration control in high-rise buildings with tuned liquid dampers - Numerical simulation and engineering applications

  • Zijie Zhou;Zhuangning Xie;Lele Zhang
    • Wind and Structures
    • /
    • 제36권2호
    • /
    • pp.91-103
    • /
    • 2023
  • Tuned liquid dampers (TLDs) are increasingly being used as efficient dynamic vibration absorbers to mitigate wind-induced vibration in super high-rise buildings. However, the damping characteristics of screens and the control effectiveness of actual structures must be investigated to improve the reliability of TLDs in engineering applications. In this study, a numerical TLD model is developed using computational fluid dynamics (CFD) and a simulation method for achieving the coupled vibration of the structure and TLD is proposed. The numerical results are verified using shaking table tests, and the effects of the solidity ratio and screen position on the TLD damping ratios are investigated. The TLD control effectiveness is obtained by simulating the wind-induced vibration response of a full-scale structure-TLD system to determine the optimal screen solidity ratio. The effects of the structural frequency, damping ratio, and wind load amplitude on the TLD performance are further analyzed. The TLD damping ratio increases nonlinearly with the solidity ratio, and it increases with the screens towards the tank center and then decreases slightly owing to the hydrodynamic interaction between screens. Full-scale coupled simulations demonstrated that the optimal TLD control effectiveness was achieved when the solidity ratio was 0.46. In addition, structural frequency shifts can significantly weaken the TLD performance. The control effectiveness decreases with an increase in the structural damping ratio, and is insensitive to the wind load amplitude within a certain range, implying that the TLD has a stable damping performance over a range of wind speed variations.

Impact of cable sag on the efficiency of an inertial mass damper in controlling stay cable vibrations

  • Wang, Zhi-hao;Gao, Hui;Xu, Yan-wei;Chen, Zheng-qing;Wang, Hao
    • Smart Structures and Systems
    • /
    • 제24권1호
    • /
    • pp.83-94
    • /
    • 2019
  • Passive negative stiffness dampers (NSDs) that possess superior energy dissipation abilities, have been proved to be more efficient than commonly adopted passive viscous dampers in controlling stay cable vibrations. Recently, inertial mass dampers (IMDs) have attracted extensive attentions since their properties are similar to NSDs. It has been theoretically predicted that superior supplemental damping can be generated for a taut cable with an IMD. This paper aims to theoretically investigate the impact of the cable sag on the efficiency of an IMD in controlling stay cable vibrations, and experimentally validate superior vibration mitigation performance of the IMD. Both the numerical and asymptotic solutions were obtained for an inclined sag cable with an IMD installed close to the cable end. Based on the asymptotic solution, the cable attainable maximum modal damping ratio and the corresponding optimal damping coefficient of the IMD were derived for a given inertial mass. An electromagnetic IMD (EIMD) with adjustable inertial mass was developed to investigate the effects of inertial mass and cable sag on the vibration mitigation performance of two model cables with different sags through series of first modal free vibration tests. The results show that the sag generally reduces the attainable first modal damping ratio of the cable with a passive viscous damper, while tends to increase the cable maximum attainable modal damping ratio provided by the IMD. The cable sag also decreases the optimum damping coefficient of the IMD when the inertial mass is less than its optimal value. The theoretically predicted first modal damping ratio of the cable with an IMD, taking into account the sag generally, agrees well with that identified from experimental results, while it will be significantly overestimated with a taut-cable model, especially for the cable with large sag.

공기스프링의 최적설계 및 방진 테이블의 능동 제어 (Optimal Design of Air-spring and Active Control of Vibration Isolation Table)

  • 안채헌;김호성;임광혁;진경복;임경화
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.909-914
    • /
    • 2006
  • Vibration isolation tables are mostly required in precise measurement and manufacturing system. Among the vibration isolation tables, an air spring is the most favorable equipment because of low resonant frequency and high damping ratio. However, it is difficult to design the air spring with the required stiffness and damping ratio. Futhermore, whenever conventional active control methods are applied to the air spring, it may be difficult to obtain effective control performance due to high nonlinearity of air spring. In this paper, the optimal design of the air spring is performed using genetic algorithm to bring out low resonant frequency and high damping ratio. Also, active control of the vibration isolation table with 3-DOF model is proposed using the adaptive control method. Through experiments, optimal design is shown to be effective. And performance of the proposed control method is verified to be better than those of the passive control method and the conventional active control methods.

  • PDF