• Title/Summary/Keyword: optimal cutting method

Search Result 157, Processing Time 0.022 seconds

Geometric error Prediction and Grinding Condition Optimization using Taguchi Methods (Taguchi 기법을 이용한 형상오차 예측 및 최적조건 선정)

  • Chi Long-Zhu;Lee Sang-Jin;Kwak Jea-Seob;Ha Man-Kyung;Jun Jae-Uhk
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1583-1586
    • /
    • 2005
  • Grinding process is different from other machining processes such as turning, milling and drilling because the cutting edges in a grinding wheel doesn't have uniformity and acts differently on the workpiece at each grinding. This study focus on predicting the geometric error produced during surface grinding and selecting an optimal grinding condition to reduce the geometric error. To achieve the aim, the Taguchi design of experiments was applied and the S/N ratios of each grinding was used for evaluating the results. The predicted quantities by the S/N ratios were compared with the experimental results.

  • PDF

Development of a Plate Manufacturing CAD/CAM Program for a Optimal Layout and Distributed Control System

  • Kim, Hun-Mo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.10
    • /
    • pp.1089-1103
    • /
    • 2000
  • A Problem of relevant interest to some industries is that of obtaining optimum two-dimensional layout. To solve this provlem, one is given a number of rectangular sheets and an order for a specified number of each of certain types of two-dimensional regular and irregular shapes. The aim is to cut the the shapes out of the sheets in such a way as to minimize the amount of waste produced. A DCS (Distributed Control System) is an integrated system which applies the decentralization concept to a control system handling both sequential and analog control. A DCS performs many operations such as data gathering, data processing, data storing and monitoring the operatin conditions for the operator. IN this paper, we propose a genetic algorithm based on rotation parameters from which the best pattern of layout is found as well as a layout method for better performance time. A DCS for the plate cutting process system, which is performed by a virtual system, is also identified.

  • PDF

A caving self-stabilization bearing structure of advancing cutting roof for gob-side entry retaining with hard roof stratum

  • Yang, Hongyun;Liu, Yanbao;Cao, Shugang;Pan, Ruikai;Wang, Hui;Li, Yong;Luo, Feng
    • Geomechanics and Engineering
    • /
    • v.21 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • An advancing cutting roof for gob-side entry retaining with no-pillar mining under specific geological conditions is more conducive to the safe and efficient production in a coalmine. This method is being promoted for use in a large number of coalmines because it has many advantages compared to the retaining method with an artificial filling wall as the gateway side filling body. In order to observe the inner structure of the gateway cutting roof and understand its stability mechanism, an equivalent material simulation experiment for a coalmine with complex geological conditions was carried out in this study. The results show that a "self-stabilization bearing structure" equilibrium model was found after the cutting roof caving when the cut line deviation angle was unequal to zero and the cut height was greater than the mining height, and the caving roof rock was hard without damage. The model showed that its stability was mainly controlled by two key blocks. Furthermore, in order to determine the optimal parameters of the cut height and the cut line deviation angle for the cutting roof of the retaining gateway, an in-depth analysis with theoretical mechanics and mine rock mechanics of the model was performed, and the relationship between the roof balance control force and the cut height and cut line deviation angle was solved. It was found that the selection of the values of the cut height and the cut line deviation angle had to conform to a certain principle that it should not only utilize the support force provided by the coal wall and the contact surface of the two key blocks but also prevent the failure of the coal wall and the contact surface.

A Study on the Design of Tool Horn for Cutting Converged with Theoretical Method and FEA (이론적 방법과 유한요소해석이 융합된 커팅용 공구 혼의 설계에 관한 연구)

  • Lee, Han-Chang;Jeong, Jin-Hyuk;Park, Chung-Woo;Oh, Myung-Seok;Park, Myung-Kyu;Lee, Bong-Gu;Kim, Chang-Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.6
    • /
    • pp.175-182
    • /
    • 2018
  • In this study, the theoretical method and the finite element analysis were designed in parallel to fabricate basic research data on the production of tool horn for cutting machine with ultrasonic vibration energy. In order to perform high-performance ultrasonic cutting, it is necessary to vibrate only with longitudinal vibration instead of transverse vibration. In order to efficiently transmit the mechanical vibration energy, the maximum amplitude should be generated at the output portion. Therefore, the tool horn must be designed so that the excitation frequency of the oscillator and the natural frequency of the tool horn are the same. In order to design the resonance of the tool horn, there are a theoretical approach using the one-dimensional wave equation and a method of reflecting the finite element analysis result to the design model. In this study, the approximate dimensions of the tool horn are first determined through the one- Based on the results of the finite element analysis, the optimal model was selected and reflected in the final shape of the tool horn. We will use this information as the basic data of actual tool horn for cutting, and will compare the production and experimental data with the contents of this research.

Optimum selection of machining parameters of Wire Electrical Discharge Machining using Taguchi method (다구찌 실험계획법을 이용한 와이어 방전가공의 최적 가공조건 선정)

  • 임세환;김주현;이위로;박주승
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.123-128
    • /
    • 2002
  • The machining parameters for the wire electrical discharge machining(WEDM), including no load voltage, pulse-on time, pulse-off time, wire tension, water flow rata offset etc. should be chosen properly so that a better performance can be obtained An optimum selection of machining parameters relies heavily on the operators technologies and experience. This study presents a method by means of Taguchi method to select optimal machining parameter combination for an cutting speed or surface roughness. Experimental results demonstrate that the machining models are appropriate and the derived machining parameters satisfy the real requirements in notice.

  • PDF

A Study of Parallel Implementations of the Chimera Method using Unsteady Euler Equations (비정상 Euler 방정식을 이용한 Chimera 기법의 병렬처리에 관한 연구)

  • Cho K. W.;Kwon J. H.;Lee S.S
    • Journal of computational fluids engineering
    • /
    • v.4 no.3
    • /
    • pp.52-62
    • /
    • 1999
  • The development of a parallelized aerodynamic simulation process involving moving bodies is presented. The implementation of this process is demonstrated using a fully systemized Chimera methodology for steady and unsteady problems. This methodology consists of a Chimera hole-cutting, a new cut-paste algorithm for optimal mesh interface generation and a two-step search method for donor cell identification. It is fully automated and requires minimal user input. All procedures of the Chimera technique are parallelized on the Cray T3E using the MPI library. Two and three-dimensional examples are chosen to demonstrate the effectiveness and parallel performance of this procedure.

  • PDF

The characteristics of Ultra Precision Machine of Optical crystals for Infrared Ray (적외선 광학소자의 초정밀 절삭특성에 관한 연구)

  • Kim G.H.;Yang Y.S.;Kim H.S;Sin H.S.;Won J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.414-417
    • /
    • 2005
  • Single point diamond turning technique for optical crystals is studied in this paper. The main factors which are influential the machined surface quality are discovered and regularities of machining process are drawn. Optical crystals have found more and more important applications in the field of modern optics. Optical crystals are mostly brittle materials of poor machinability. The traditional machining method is polishing which has many shortcomings such as low production efficiency, poor ability to be automatically controlled and edge effect of the workpiece. The purpose of our research is to find the optimal machining conditions for ductile cutting of optical crystals and to apply the SPDT technique to the manufacturing of ultra precision optical components of brittle material(Ge). Many technical challenges are being tried for the large space infrared telescope, which is one of the major objectives of the National Strategic Technology Road Map (NSTRM).

  • PDF

Effect of Stem Number and Propagation Method on Yield Components of Boxthorn(Lycium chines Mill.) (주당 적정줄기수와 번식방법이 구기자의 수량형질에 미치는 영향)

  • 이봉춘
    • Korean Journal of Plant Resources
    • /
    • v.9 no.1
    • /
    • pp.71-75
    • /
    • 1996
  • Experiments were conducted to investigate the proper stem number and the propagation method of Lycium Chinense Mill. from 1993 to 1994.The results obtained were summerized as follows. The most effective propagation method was stem cutting 20cm in which flowering time was 15days earlier and dry fruit weight was 30 percent heavier(91kg/10a) than in seed propagation. The optimal diameter of cutting was 0.9cm of which dry fruit weight was 227kg/10a and 28 percent heavier compared with that of 0.5cm. stem number 5 had the best top growth and the heaviest 100 fruit weight as 13.4g. Fruit number per plant was increased as 864 in stem number 5. Dry fruit yield of stem number 5 was 104kg/10a and 16 percent increased compared with that of control.

  • PDF

NC Tool Paths Program Development for the Pocket Machining (포켓 가공을 위한 NC 공구경로의 프로그램 개발)

  • Oh, Seon;Kwon, Young-Woong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.75-81
    • /
    • 2003
  • Pocket machining is metal removal operation commonly used for creating depressions in machined parts. Numerically controlled milling is the primary means for machining complex die surface. These complex surfaces are generated by a milling cutter which removes material as it traces out pre-specified tool paths. To machine, a component on a CNC machine, part programs which define the cutting tool path are needed. This tool path is usually planned from CAD, and converted to a CAM machine input format. In this paper I proposed a new method for generating NC tool paths. This method generates automatically NC tool paths with dynamic elimination of machining errors in 2$\frac{1}{2}$ arbitrary shaped pockets. This paper generates a spiral-like tool path by dynamic computing optimal pocket of the pocket boundary contour based on the type and size of the milling cutter, the geometry of the pocket contour and surface finish tolerance requirements. This part programming system is PC based and simultaneously generates a G-code file.

The Preferred Alternative for MLDM Problems using the Signal-to-Noise Ratios (신호대 잡음비를 이용한 MLDM 문제의 선호대안 선정)

  • 이강인
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.26 no.4
    • /
    • pp.72-81
    • /
    • 2003
  • The purpose of this paper is to propose an interactive method, which is designed to select the optimal preferred alter-native for the MLDM(Multiple-the Larger-the better type Decision-Making) problems with the-larger-the-better quality characteristics. The basic idea of the paper is essentially to eliminate inefficient alternative based on the concept of Taguchi Signal-to-Noise ratios and the cutting range instead of using UVF(Utility/value Function) on the group of attributes that can be considered importantly by the decision makers. As a result, the method proposed in the paper for MLDM problems can be significant in that the change of characteristics is transformed into the size of Signal-to-Noise ratio, which can be relatively easy to understand by decision makers.