• Title/Summary/Keyword: optimal command

Search Result 139, Processing Time 0.022 seconds

Receding horizon tracking control as a predicitive control for the continuous-time systems

  • Noh, Seon-Bong;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1055-1059
    • /
    • 1990
  • This paper proposed a predictive tracking controller for the continuous-time systems by using the receding horizon concept in the optimal tracking control. This controller is the continuous-time version of the previous RHTC (Receding Horizon Tracking Control) for the discrete-time state space models. The problems in implementing the feedforward part of this controller is discussed and a approximate method of implementing this controller is presented. This approximate method utilizes the information of the command signals on the receding horizon and has simple constant feedback and feedforward gain. To perform the offset free control, the integral action is included in the continuous time RHTC. By simulation it is shown that the proposed method gives better performance than the conventional steady state tracking control.

  • PDF

Development of an 80[kW] IPMSM Drive System for an Electric Vehicle (전기자동차용 80[kW] IPMSM 구동 시스템 개발)

  • Kim, Sang-Hoon;Park, Nae-Chun
    • Journal of Industrial Technology
    • /
    • v.33 no.A
    • /
    • pp.61-66
    • /
    • 2013
  • This paper is about the development of 80[kW] IPMSM(Interior Permanent Magnet Synchronous Motor) drive system for an electric vehicle. MTPA(Maximum Torque per Ampere) operation and flux-weakening operation for the optimal torque control of the IPMSM are presented. In this system, the torque control of the IPMSM is achieved by using the look-up table, which gives d- and q-aixs current references for the given torque command in the MTPA operation and flux-weakening operation regions. This look-up table is made by current injection tests, and from which the motor parameters are also estimated. The proposed system is verified by the experiment on the electric vehicle drive system, which consists of an 80[kW] IPMSM and an IGBT inverter.

  • PDF

A STUDY ON THE SPEED CONTROL OF AC SERVO MOTOR BY TIME CONSTANT

  • Kim, Pyoung-Ho;Park, In-June;Baek, Hyung-Lae;Chung, Byung-Ho
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.325-329
    • /
    • 1998
  • This paper describes the controller for the improving speed control of the AC servo motor. The microprocessor provides an output to the difference in command. the servo system improves the characteristics of speed control. When the motor is running at the same speed as set by the reference signal, the speed encoder also provides a signal of the same frequency. Thus, the microprocessor controlled digital techniques enable to realize the flexible performance and control which was possible with time constant of linear acceleration/deceleration. We can know that optimal speed of machining center is 75msec in 30000mm/min and actually, 75msec is using on machining center. Finally experimental results prove excellent performance of this control system. This can be reduced error with more exact measure of actual speed. The system can be adaptable to CNC machine.

  • PDF

Control Characteristics of Speed Using Time Constant on the AC Servo Motor (교류서보모터의 시정수에 의한 속도 제어특성)

  • 김평호;박인준;정병호;오금곤;백형래
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.347-351
    • /
    • 1998
  • This paper describes the controller for the improving speed control the AC servo motor. The microprocessor provides an output to the difference in command. The servo system improves the characteristics of speed control. When the motor is running at the same speed as set by the reference signal, the speed encoder also provides a signal of the same frequency. Thus, the microprocessor controlled digital techniques enable to realize the flexible performance and control which was possible with time constant. We can know that optimal speed of machining center is 75msec in 30000mm/min and actually, 75msec is using on machining center. Finally experimental results prove excellent performance of this control system. This can be reduced error with more exact measure of actual speed. The system can be adaptable to CNC machine.

  • PDF

A Study on Phase Velocity Correction of Motorized Wheelchair Based on Fuzzy Control (퍼지제어에 의한 전동 휠 체어의 경로속도 보정에 관한 연구)

  • Lee, C.H.;Lee, D.H.;Yang, S.J.;Hong, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.11
    • /
    • pp.71-76
    • /
    • 1992
  • In this study, Fuzzy control algorithm to generate a change of rocomotion cordition according to an outer environment is introduced on a motorized wheelchair control. An optimal control rules for conquesting the less of safety and system inefficiency in the past are given to this motorized wheelchair. And dynamic analysis is also adopted to it. Using those rules, a proportional control was possible when the vehicle changed its moving direction. The proposed method which considers the relationship between a moving velocity and the command from the joystick shows better performance in the change of moving direction.

  • PDF

Cutting Force Regulation in Turning Using Sliding Mode Control (슬라이딩 모드 제어기를 응용한 선삭공정 절삭력 제어)

  • 박영빈;김종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.605-609
    • /
    • 1996
  • Continuous sliding mode control is applied to turning process for cutting force regulation. The highest feedrate compatible with the allowable cutting force is applied in rough cutting process such that maximum productivity is ensured and tool breakage is avoided. The programmed feedrate is overridden after the control algorithm is carried out. However, most CNC lathe manufacturers offer limited number of data bits far feedrate override, thus resulting in nonlinear behavior of the machine tools. Such nonlinearity brings “quantized” effect, and the optimal faedrate is rounded off before being fed into the CNC system. To compensate for this problem, continuous sliding mode control is applied. Conventional switching control law at a sliding surface is replaced by a smooth control interpolation in a selected boundary layer to avoid the excitation of high-frequency dynamics. Simulation results are presented in comparison with those obtained by applying adaptive control.

  • PDF

EFFICIENT THERMAL MODELING IN DEVELOPMENT OF A SPACEBORNE ELECTRONIC EQUIPMENT

  • Kim Jung-Hoon;Koo Ja-Chun
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.270-273
    • /
    • 2004
  • The initial thermal analysis needs to be fast and efficient to reduce the feedback time for the optimal electronic equipment designing. In this study, a thermal model is developed by using power consumption measurement values of each functional breadboard, that is, semi-empirical power dissipation method. In modeling heat dissipated EEE parts, power dissipation is imposed evenly on the EEE part footprint area which is projected to the printed circuit board, and is called surface heat model. The application of these methods is performed in the development of a command and telemetry unit (CTU) for a geostationary satellite. Finally, the thermal cycling test is performed to verify the applied thermal analysis methods.

  • PDF

Cerebellar Control of Saccades (소뇌의 단속안구운동 조절)

  • Choi, Jae-Hwan;Choi, Kwang-Dong
    • Annals of Clinical Neurophysiology
    • /
    • v.15 no.2
    • /
    • pp.37-41
    • /
    • 2013
  • Saccades are rapid eye movements that shift the line of sight between successive points of fixation. The cerebellum calibrates saccadic amplitude (dorsal vermis and fastigial nucleus) and the saccadic pulse-step match (flocculus) for optimal visuo-ocular motor behavior. Based on electrophysiology and the pharmacological inactivation studies, early activity in one fastigial nucleus could be important for accelerating the eyes at the beginning of a saccade, and the later activity in the other fastigial nucleus could be critical for stopping the eye on target, which is controlled by inhibitory projection from the dorsal vermis. The cerebellum could monitor a corollary discharge of the saccadic command and terminate the eye movement when it is calculated to be on target. The fastigial nucleus and dorsal vermis also participate in the adaptive control of saccadic accuracy.

Lane-Curvature Method : A New Method for Local Obstacle Avoidance (차선-곡률 방법 : 새로운 지역 장애물 회피 방법)

  • Ko, Nak-Yong;Lee, Sang-Kee
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.313-320
    • /
    • 1999
  • The Lane-Curvature Method(LCM) presented in this paper is a new local obstacle avoidance method for indoor mobile robots. The method combines Curvature-Velocith Method(CVM) with a new directional method called the Lane Method. The Lane Method divides the environment into lanes taking the information on obstacles and desired heading of the robot into account ; then it chooses the best lane to follow to optimize travel along a desired heading. A local heading is then calculated for entering and following the best lane, and CVM uses this heading to determine the optimal translational and rotational velocity space methods, LCM yields safe collision-free motion as well as smooth motion taking the dynamics of the robot Xavier, show the efficiency of the proposed method.

  • PDF

Microprocessor-Based Vector Control System for Induction Motor Servo- Drive (유도전동기 서보운전을 위한 마이크로프로세서-벡터 제어 시스템)

  • 김광헌;김영렬;원충연;원종수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.12
    • /
    • pp.1218-1229
    • /
    • 1991
  • The time optimal position control design can be repeatedly taken from the initial state of a dynamic system to a desired one as fast as possible in the industrial drives. In this case, an induction machine parameters will vary due to temperature, frequency, and saturation effects. In particular, the rotor resistance changes critically with temperature and frequency. These changes affect the command values of the stator current components and slip speed. There is a mismatch between the commanded variables and actual ones of the induction motor drive, and this situation leads to coupling of the vector controller from the plant, i.e. the induction motor . Consequences of such a coupling include the initiation of oscillations of the rotor flux and unsuitable switching of electromagnetic torque for the induction motor servo drive. Therefore, this paper describes a rotor resistance parameter compensating method for the induction motor, And the validity of the proposed design method is confirmed by simulation studies and experiment results.

  • PDF