• Title/Summary/Keyword: optimal approximation

Search Result 476, Processing Time 0.023 seconds

A Curve-Fitting Channel Estimation Method for OFDM System in a Time-Varying Frequency-Selective Channel (시변 주파수 선택적 채널에서 OFDM시스템을 위한 Curve-Fitting 채널추정 방법)

  • Oh Seong-Keun;Nam Ki-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.3 s.345
    • /
    • pp.49-58
    • /
    • 2006
  • In this paper, a curve-fitting channel estimation method is proposed for orthogonal frequency division multiplexing (OFDM) system in a time-varying frequency-selective fading channel. The method can greatly improve channel state information (CSI) estimation accuracy by performing smoothing and interpolation through consecutive curve-fitting processes in both time domain and frequency domain. It first evaluates least-squares (LS) estimates using pilot symbols and then the estimates are approximated to a polynomial with proper degree in the LS error sense, starting from one preferred domain in which pilots we densely distributed. Smoothing, interpolation, and prediction are performed subsequently to obtain CSI estimates for data transmission. The channel estimation processes are completed by smoothing and interpolating CSI estimates in the other domain once again using the channel estimates obtained in one domain. The performance of proposed method is influenced heavily on the time variation and frequency selectivity of channel and pilot arrangement. Hence, a proper degree of polynomial and an optimum approximation interval according to various system and channel conditions are required for curve-fitting. From extensive simulation results in various channel environments, we see that the proposed method performs better than the conventional methods including the optimal Wiener filtering method, in terms of the mean square error (MSE) and bit error rate (BER).

Quay Crane Scheduling Considering the Workload of Yard Blocks in an Automated Container Terminal (장치장 블록의 작업부하를 고려한 안벽크레인 작업계획)

  • Lee, Seung-Hwan;Choe, Ri;Park, Tae-Jin;Kim, Kap-Hwan;Ryu, Kwang-Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.4
    • /
    • pp.103-116
    • /
    • 2008
  • This paper proposes quay crane (QC) scheduling algorithms that determine the working sequence of QCs over ship bays in a container vessel in automated container terminals. We propose two scheduling algorithms that examine the distribution of export containers in the stacking yard and determine the sequence of ship bays to balance the workload distribution among the yard blocks. One of the algorithms is a simple heuristic algorithm which dynamically selects the next ship bay based on the entropy of workloads among yard blocks whenever a QC finishes loading containers at a ship bay and the other uses genetic algorithm to search the optimal sequence of ship bays. To evaluate the fitness of each chromosome in the genetic algorithm, we have devised a method that is able to calculate an approximation of loading time of container vessels considering the workloads among yard blocks. Simulation experiments have been carried out to compare the efficiency of the proposed algorithms. The results show that our QC scheduling algorithms are efficient in reducing the turn-around time of container vessels.

  • PDF

Optimal Input Database Construction for 3D Dredging Quantification (3차원 준설물량 산출을 위한 최적의 입력DB 구축방안)

  • Gang, ByeungJu;Hwang, Bumsik;Park, Heonwoo;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.5
    • /
    • pp.23-31
    • /
    • 2018
  • The dredging project became more important with the recent construction of off shore structures and reclamation projects. Accordingly, more exact quantitative estimation of the dredged amount should be required. The sub-sea ground information can be obtained generally by the boring investigation and the dredged amount can be estimated based on the depth or the deeper bound of a ceratin layer via 3D visualization program. During the estimation process, the input DB should be constructed with 1D elevation information from boring investigation for the spatially approximated distribution of a deeper bound of each ground layer. The input DB can be varied with the application of the borings and the approximation targets. Therefore, the 3D visualized ground profile and dredged amounts are compared on the actively dredged sites, vicinity of Saemangeum area and outer port area in Gunsan with regard to the input DB construction methods. Conclusively, the input DB based on the spatially approximated depths show higher precision results and more reasonable 3D visualized ground profiles.

A Numerical Study on the Geometry Optimization of Internal Flow Passage in the Common-rail Diesel Injector for Improving Injection Performance (커먼레일 디젤인젝터의 분사성능 개선을 위한 내부유로형상 최적화에 관한 수치적 연구)

  • Moon, Seongjoon;Jeong, Soojin;Lee, Sangin;Kim, Taehun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.91-99
    • /
    • 2014
  • The common-rail injectors are the most critical component of the CRDI diesel engines that dominantly affect engine performances through high pressure injection with exact control. Thus, from now on the advanced combustion technologies for common-rail diesel injection engine require high performance fuel injectors. Accordingly, the previous studies on the numerical and experimental analysis of the diesel injector have focused on a optimum geometry to induce proper injection rate. In this study, computational predictions of performance of the diesel injector have been performed to evaluate internal flow characteristics for various needle lift and the spray pattern at the nozzle exit. To our knowledge, three-dimensional computational fluid dynamics (CFD) model of the internal flow passage of an entire injector duct including injection and return routes has never been studied. In this study, major design parameters concerning internal routes in the injector are optimized by using a CFD analysis and Response Surface Method (RSM). The computational prediction of the internal flow characteristics of the common-rail diesel injector was carried out by using STAR-CCM+7.06 code. In this work, computations were carried out under the assumption that the internal flow passage is a steady-state condition at the maximum needle lift. The design parameters are optimized by using the L16 orthogonal array and polynomial regression, local-approximation characteristics of RSM. Meanwhile, the optimum values are confirmed to be valid in 95% confidence and 5% significance level through analysis of variance (ANOVA). In addition, optimal design and prototype design were confirmed by calculating the injection quantities, resulting in the improvement of the injection performance by more than 54%.

Compensation Characteristics of Distorted Channels in 200 Gbps WDM Systems using Mid-Span Spectral Inversion Method (200 Gbps WDM 시스템에서 Mid-Span Spectral Inversion 기법을 이용한 채널 왜곡의 보상 특성)

  • 이성렬
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.845-854
    • /
    • 2003
  • In this paper, the characteristics of compensation for WDM channel signal distortion due to both chromatic dispersion and Ken effect in 1,000 km 200 Gbps(5${\times}$40 Gbps) WDM systems was investigated. The WDM system has a path-averaged intensity approximation(PAIA) mid-span spectral inversion(MSSI) as a compensation method. This system has a highly nonlinear dispersion shifted fiber(HNL-DSF) optical phase conjugator(OPC) in the mid-way of transmission line. In order to evaluate the degree of compensation, 1 dB eye opening penalty(EOP), bit error rate(BER) characteristics and power penalty of 10$\^$-9/ BER are used. It is confirmed that HNL-DSF is an useful nonlinear medium in OPC fur wideband WDM system with PAIA MSSI and that the optimal compensation for WDM channel distortion is achieved by the selection of pump light power of OPC, which equalize the conjugated light power into the second half fiber section with the input WDM signal light power depending on total transmission length, dispersion coefficient of fiber, OPC pump light wavelength, conversion efficiency of WDM channel in OPC.

Long-term Results of Gamma Knife Radiosurgery for Craniopharyngioma (두개인두종의 감마나이프 치료 후 장기 추적 결과)

  • Kim, Yun Sok;Lee, Do Heui;Ra, Dong Suk;Chun, Young Il;Ahn, Jae Sung;Jeon, Sang Ryong;Kim, Jeong Hoon;Roh, Sung Woo;Ra, Young Shin;Kim, Chang Jin;Kwon, Yang;Rhim, Seung Chul;Lee, Jung Kyo;Kwun, Byung Duk
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.sup2
    • /
    • pp.289-293
    • /
    • 2001
  • Objectives : The optimal treatment of craniopharyngioma is controversial. Despite recent advances in microsurgical management, complete surgical removal of craniopharyngioma remains very difficult. Radiation added to surgery is effective, but radiation therapy resulted in untoward side effect in young patient. Gamma knife radiosurgery offers the theoretical advantage of a reduced radiation dose to surrounding structures during the treatment of residual or recurrent craniopharyngioma compared with fractionated radiotheraphy. We described retrospective analysis of tumor size and clinical symptoms of patients after gamma knife radiosurgery in residual or recurrent craniopharyngioma were performed. Material and Methods : From September 1990 to January 2000, 18 patients of craniopharyngioma were treated by gamma knife radiosurgery. All patient had undergone surgery, but residual or recurrent tumor was found and all of them treated postoperative gamma knife radiosurgery. The mean age was 19(from 6 to 66) and male to female ratio was 10 to 8 and 8 patients were below 15 years old. In young age group(below age 15), the average volume of the tumor was $2904.8mm^3$ and mean maximal gamma knife dose was 34.9Gy. In old age group(older than 15), the average volume of the tumor was $2590.4mm^3$ and mean maximal gamma knife dose was 45.2Gy. The size of the tumor was average $2730.1mm^3$($88-12000mm^3$), mean average radiation dose was 40.7Gy and the mean prescription dose was 17.6 Gy(4-35Gy) delivered to a median prescription 50.7% isodose. Results : The follow up was from 1 year to 9 years(mean 59.1 months) after gamma knife radiosurgery. The tumor was controlled in 13(72.2%) patients. The tumor decreased in 9 patients and not changed in 4 patients. The tumor size increased in 4(22.2%) patients during follow up period. In two cases the tumor size increased because of its cystic portion was increased, but their solid portion of the tumor was not changed. In another two patients, the solid portion of the tumor was increased. So, one patient underwent reoperation and the other patient underwent operation and repeated gamma knife radiosurgery. The tumor recurred in one case(5.6%) that is a outside of irradiated site. The presenting symptoms were improved in 4 patients(improved visual acuity in 1, controlled increased intracranial presure sign in 3 patients). In one case, visual acuity decreased after gamma knife radiosurgery. The endocrine symptoms were not influenced by gamma knife radiosurgery. Conclusion : Craniopharyngioma can be treated successfully by gamma knife radiosurgery. Causes of the tumor regrowth are inadequate dose planning because of postoperatively poor margination of the tumor, close approximation of optic nerve and residual tumors outside the target lesion. Recurrence can develop 4 years after gamma knife radiosurgery. Volume is important, but the accurate targeting is more important to prevent tumor recurrence. If the tumor definition is not clear during planning gamma knife surgery, long-term image follow up is required.

  • PDF