• Title/Summary/Keyword: optical planar waveguide

Search Result 125, Processing Time 0.031 seconds

Image Reconstruction Based on Deep Learning for the SPIDER Optical Interferometric System

  • Sun, Yan;Liu, Chunling;Ma, Hongliu;Zhang, Wang
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.260-269
    • /
    • 2022
  • Segmented planar imaging detector for electro-optical reconnaissance (SPIDER) is an emerging technology for optical imaging. However, this novel detection approach is faced with degraded imaging quality. In this study, a 6 × 6 planar waveguide is used after each lenslet to expand the field of view. The imaging principles of field-plane waveguide structures are described in detail. The local multiple-sampling simulation mode is adopted to process the simulation of the improved imaging system. A novel image-reconstruction algorithm based on deep learning is proposed, which can effectively address the defects in imaging quality that arise during image reconstruction. The proposed algorithm is compared to a conventional algorithm to verify its better reconstruction results. The comparison of different scenarios confirms the suitability of the algorithm to the system in this paper.

Fabrication and Characterization of PLC-based Mach-Zehnder Interferometer Sensor (PLC-기반의 마흐-젠더 간섭계 센서 제작 및 특성 평가)

  • Kim, Jun-Hyong;Yang, Hoe-Yong;Lee, Hyun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.390-390
    • /
    • 2008
  • In this paper, we have designed and fabricated optical waveguides based on the Mach-Zehnder Interferometer (MZI) for application to sensor. The evanecent-wave sensor based on the MZI principle has sufficiently high sensitivity to measure the change of the refractive index on surface of a waveguide. The waveguides were optimized at a wavelength of 1550 nm and fabricated according to the design rule of 0.45 delta%, which is the difference of refractive index between the core and clad. The fabrication of MZI optical waveguides was performed by a conventional Planar Lightwave Circuit (PLC) fabrication process. The fabricated MZI optical waveguide device was measured. According to the measurement result, the insertion loss of MZI optical waveguide device was below 3.5 dB and the polarization dependent loss (PDL) was within 0.1dB. In addition, we analyzed optical properties of MZI sensor according to the refractive index change of the sensor arm.

  • PDF

Active optical coupler using the side polished single mode fiber and thermo-optic polymer multimode planar waveguide (측면 연마된 단일모드 광섬유와 열 광학 다중모드 평면도파로를 이용한 능동형 광 결합기)

  • 김광택;유호종;김성국;이소영;송재원;이상재;김시홍;강신원
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.3
    • /
    • pp.248-253
    • /
    • 1999
  • In this paper, we have investigated a fiber type active coupler which utilizes the mode coupling between the side polished single mode optical fiber and the active multimode planar waveguide. The proposed device can be used for not only tunable wavelength filter or optical intensity modulator but also a tool for measuring optical properties of guiding material such as refractive index, birefringence, electro-optic coefficient, and thermo-optic coefficient. We gave designed and optimized a coupler structure using the BPM and fabricated the device using thermo-optic polymer as active planar waveguide overlay. The device showed that insertion loss was less then 0.5 dB, extinction ratio was -13 dB at the resonance wavelength, and the wavelength tunablity due to thermo-optic effect was -1.5 nm/$^{\circ}C$. The active coupler using thermo-optic effect can be used as a wavelength tunable filer, an optical intensity modulator and an optical sensor. pulses that are subsequently compressed by a dispersive optical fiber. Experimental results show that $sech^2$ shape pulses with a pulse width of ~14 ps and a time bandwidth product of ~0.34 are successfully generated at 10 GHz repetition rate. In contrast to other methods, such as higher order soliton compression, this approach does not depend on the optical power and thus shows promise for application to low-power lasers.

  • PDF

Design and Analysis of Refractometer Based on Bend Waveguide Structure with Air Trench for Optical Sensor Applications

  • Ryu, Jin Hwa;Lee, Woo-Jin;Lee, Bong Kuk;Do, Lee-Mi;Lee, Kang Bok;Um, Namkyoung;Baek, Kyu-Ha
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.841-846
    • /
    • 2014
  • This study proposes a novel optical sensor structure based on a refractometer combining a bend waveguide with an air trench. The optical sensor is a $1{\times}2$ splitter structure with a reference channel and a sensing channel. The reference channel has a straight waveguide. The sensing channel consists of a U-bend waveguide connecting four C-bends, and a trench structure to partially expose the core layer. The U-bend waveguide consists of one C-bend with the maximum optical loss and three C-bends with minimum losses. A trench provides a quantitative measurement environment and is aligned with the sidewall of the C-bend having the maximum loss. The intensity of the output power depends on the change in the refractive index of the measured material. The insertion loss of the proposed optical sensor changes from 3.7 dB to 59.1 dB when the refractive index changes from 1.3852 to 1.4452.

Investigation of Planar Optical Waveguide Formed by MeV $He^{+}$ Ion-Implantation into NaEr(WO$_4$)$_2$ Crystal

  • Feng Chen;Wang, Xue-Lin;Wang, Ke-Ming;Cheng, Zhen-Xiang;Chen, Huan-Chu;Shen, Ding-Yu
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.2
    • /
    • pp.97-100
    • /
    • 2002
  • NaEr(WO$_4$)$_2$ is a new laser material. The planar optical waveguide was formed in NaEr(WO$_4$)$_2$ crystal by 2.6 MeV He$^{+}$ ion implantation at doses of 1.0-1.5 $\times$ 10$^{16}$ ions/cm$^2$ at room temperature. The effective refractive indices of the dark modes were measured using the prism coupling method. foul n modes and five TM modes were observed in the waveguide. The refractive index profiles were analyzed using the reflectivity calculation method (RCM). The influence of heat treatment at moderate temperature on the refractive index profiles of the waveguide was also investigated. We used the TRIM'98 (Transport of ton in Matter) code to simulate the damage profile in the NaEr(WO$_4$) crystal by 2.6 MeV He$^{+}$ion implantation which is helpful for a better understanding of the waveguide formation.ion.

  • PDF

Analysis of side-polished fiber couplers with an intermediate-coupling layer and improvement of their coupling efficiency (중간 결합층이 적층된 측면연마 광섬유 결합기의 해석 및 결합효율 개선)

  • 손경락;김광택
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.1
    • /
    • pp.28-33
    • /
    • 2004
  • An in-line fiber coupler, based on side-polished single-mode fibers covered with an intermediate coupling layer and a planar waveguide, is analyzed by modeling the interaction region as an equivalent multi-layered planar waveguide. The reflectance for the multi-layered structure with and without buffer layer is illustrated as a function of the refractive index and thickness of the overlay waveguides. When the refractive index of the overlay waveguides is greater than that of the fiber core, the conditions for the intermediate coupling layer to increase the power coupling from the fiber to the overlays is also explained. Through the experimental results using a LiNbO$_3$planar waveguide, we show that the theoretical analysis is reasonable and in good agreement with the measured values.

Fiber-to-planar waveguide coupler with a thin metal intermediate layer (얇은 금속 중간층이 포함된 광섬유-평면도파로 결합기)

  • 김광택;윤대성;손경락
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.355-358
    • /
    • 2003
  • We report experimental results on the wavelength and polarization selective coupling properties of fiber-to-planar waveguide coupler having a thin metal intermediate layer. The influence of the metal layer thickness and the refractive index of the superstrate on the device properties has been measured and explained. The proposed device exhibited various application possibilities including polarizers, modulators, and sensors.

Optical Sensor Based on Evanescent Field Coupling Between Side-Polished Polarization Maintaining Fiber and Planar Waveguide Coupler (측면 연마 편광 유지 광섬유와 평면 도파로 사이의 소산장 결합을 이용한 광센서)

  • Kim, Kwang-Taek;HwangBo, Sueng;Kang, Yong-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.207-212
    • /
    • 2004
  • We have investigated the optical characteristics of a directional coupler made of a side-polished polarization maintaining fiber in contact with a multimode planar waveguide and its applications as sensors. A device structural condition to achieve the polarization insensitive wavelength response has been presented. The fabricated devices revealed a superior immunity to the bending and the deformation of PM fibers in the input section. It is experimentally shown that the proposed device is suitable for a remote fiber sensor.