• Title/Summary/Keyword: optical parametric amplifier

Search Result 3, Processing Time 0.02 seconds

Nonlinear interferometric optical parametric amplifier (비선형 간섭계 파라메트릭 광증폭기)

  • Lee, Sang-Yong;Kim, Jae-Kwan;Jeong, Je-Myung;Chang, Ho-Sung
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.2
    • /
    • pp.175-183
    • /
    • 2003
  • We obtain a solution of optical parametric amplification using self-phase modulation within the Kerr media in a nonlinear interferometer with two arms. We show that it is equivalent to the solution driven by four-wave mixing and that the solution of parametric amplification is suitable to generate a parametric gain. We obtain a derivative of power gain with respect to the propagation distance and show that gain-saturation can occur as the beam propagates along the nonlinear arms. We also show a bandwidth characteristic of the parametric amplification driven by nondegenerate four-wave mixing. Numerical examples are given to illustrate that the solution of the parametric amplification can be applied to design and analysis of all-optical devices such as all-optical amplifiers.

Enhancement in quantum noise correlation between the two outputs of a nondegenerate optical amplifier with a non-vacuum state idler input

  • Kim, Chong-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.1-4
    • /
    • 1997
  • The theoretical limit of the noise correlation between the signal and idler outputs of a nondegenerate optical parametric amplifier (NOPA) with a coherent state signal and vacuum state idler input can be enhanced if a non-vacuum coherent state idler input is employed. By choosing a balanced signal and idler input, the noise correlation is $1/{({\root}g + {\root}{g-1})}^2$, where g is the intensity gain of the NOPA, and that is superior to the prediced outputs with single signal input by approximately 3dB. The result is applicable to all the schemes that use the NOPA to produce a sub-shot noise light generation such as feed-back or feed-forward control.

Picosecond Mid-Infrared 3.8 ㎛ MgO:PPLN Optical Parametric Oscillator Laser with High Peak Power

  • Chen, Bing-Yan;Wang, Yu-Heng;Yu, Yong-Ji;Jin, Guang-Yong
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.186-190
    • /
    • 2021
  • In this study, a compact, picosecond, mid-infrared 3.8 ㎛ MgO:PPLN optical parametric oscillator (OPO) laser output with high peak power is realized using a master oscillator power amplifier (MOPA) 1 ㎛ solid-state laser seeded by a picosecond fiber laser as the pump source. The pump source was a 50 MHz and 10 ps fiber seed source. After AOM pulse selection and two-stage solid-state amplification, a 1,064 nm laser output with a repetition frequency of 1-2 MHz, pulse width of 9.5 ps, and a maximum average power of 20 W was achieved. Furthermore, a compact short cavity with a unsynchronized pump is adopted through the design of an OPO cavity structure. When the injection pump power was 15 W and the repetition frequency was 1 MHz, the average output power of idler light was 1.19 W, and the corresponding peak power was 119 kW. The optical conversion efficiency was 7.93%. When the repetition frequency was increased to 2 MHz, the average output power of idler light was 1.63 W, the corresponding peak power was 81.5 kW, and the optical conversion efficiency was 10.87%. At the same time, the output wavelength was measured at 3,806 nm, and the beam quality was MX2 = 3.21 and MY2 = 3.34.