• Title/Summary/Keyword: optical interference

Search Result 621, Processing Time 0.027 seconds

Optical Sensor Technology for Supervisory and Control of Electric Power System (전력 시스템 감시 제어용 광센서 기술)

  • Kim, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2189-2191
    • /
    • 2000
  • Electric power systems are becoming advanced by using new technology year by year However, in electric power system environments. electromagnetic interference occurs in measurement, supervisory and control systems, especially in sensors. Optical sensor technologies are useful for solving the problem, since they are not affected by electromagnetic interference because they are composed of insulting materials. In this paper, some applications of optical sensor technology to electric power systems are introduced.

  • PDF

Development of Monitoring System for Inspection of Polarization Optical Fiber (편광 유지형 광섬유의 검사 모니터링 시스템 개발)

  • Kim, Jae-Yoel;Lim, Jong-Han
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.145-150
    • /
    • 2007
  • Optical communication according to request of technology of communications and optical fiber to be full filed faster communication and pass over transmission capacity limit per unit area, per unit hour appeared, and this optical fiber acts the biggest role to influence performance of optical communication network. Optical fiber(PMF Polarization Maintaining Fiber) is used, and is used by electric field measurement, self-discipline measurement, sensor(Sensor) Department by high definition measure such as thermometry and storehouse component that use because make broad sense status and polarized light information in passageway and union with storehouse integrated circuit etc. that use broad sense interference developing could transmit in state that keep transmitting broad sense plane of polarization is polarized light existence. Also, research is developed by optical fiber for Coherent communication recently.

Proposal of optical subscriber access network using optical CDMA method with optical switches (광 스위치를 이용한 광 CDMA 방식에 의한 광 가입자 액세스 망의 제안)

  • Park, Sang-Jo;Kim, Bong-Kyu
    • The KIPS Transactions:PartC
    • /
    • v.10C no.3
    • /
    • pp.317-324
    • /
    • 2003
  • In this paper, we propose the ATM based Passive Optical Network (PON) using the optical CDMA scheme with optical switches and PN codes in time domain. We also propose the bipolar optical receiving correlator for PN codes. As optical CDMA is performed by driving directly an optical switch on-off switching with PN codes, the number of distinct code sequences can be increased and the flexibility in assigning PN codes can be improved. Finally we theoretically analyze the signal-to-interference -plus-noise ratio and the bit error probability of regenerated signal and compare the performance of proposed scheme compared with ATM based PON using conventional optical CDMA with optical delay lines.

Intersymbol Interference of Optical Signal in Wireless Optical Communication System (광무선통신시 광신호의 부호간 간섭에 관한 연구)

  • Lee, Chang-Won;Jung, Jin-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.2
    • /
    • pp.159-164
    • /
    • 2005
  • When an optical pulse propagates through the atmospheric channel, the atmospheric turbulence attenuates and spreads this pulse. This attenuation and broadening of pulse are occurred by the fluctuation in the arrival time of pulse at the optical receiver. This pulse broadening induces the intersymbol interference (ISI) between the adjacent pulses. finally, the adjacent pulses are overlapped and the bit rate and the repeaterless transmission length are limited by the ISI. In digital communication system, therefore, the pulse broadening is more important factor than the attenuation. In this paper, thus, we find the ISI in the atmospheric turbulence as the function of the structure constant for the refractive index fluctuation that presents the strength of turbulence using the temporal momentum function and present it by numerical analysis.

  • PDF

Ultraviolet Light Sensor Based on an Azobenzene-polymer-capped Optical-fiber End

  • Cho, Hee-Taek;Seo, Gyeong-Seo;Lim, Ok-Rak;Shin, Woojin;Jang, Hee-Jin;Ahn, Tae-Jung
    • Current Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.303-307
    • /
    • 2018
  • We propose a simple ultraviolet (UV) sensor consisting of a conventional single-mode optical fiber capped with an azobenzene-moiety-containing polymer. The UV light changes the dimensions of the azobenzene polymer, as well as the refractive index of the material. Incident light with a wavelength of 1550 nm was reflected at the fiber/polymer and polymer/air interfaces, and interference of the reflected beams resulted in spectral interference that shifted the wavelength by 0.78 nm at a UV input power of $2.5mW/cm^2$. The UV sensor's response to wavelength is nonlinear and stable. The response speed of the sensor is limited by detection noise, which can be improved by modifying the insertion loss of the UV sensor and the signal-to-noise ratio of the detection system. The proposed compact UV sensor is easy to fabricate, is not susceptible to electromagnetic interference, and only reacts to UV light.

Optical Characteristics of Bimetallic Silver-Gold Film Structure in Surface Plasmon Resonance Sensor Applications (표면 플라즈몬 공명 센서에서의 쌍금속 은-금 박막 구조의 광학 특성)

  • Gwon, Hyuk-Rok;Lee, Seong-Hyuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.156-160
    • /
    • 2007
  • Surface plasmon resonance(SPR) has been widely studied for biological and chemical sensing applications. The present study conducts numerical simulation for the single and bimetallic layer SPR configurations by using the multiple beam interference matrix(MBIM) method to investigate the influence of wave interference and complex refractive indices of materials on optical characteristics such as reflectance and optical phase shift which are used for sensing. First, calculated reflectances are compared with experimental data for validation. In addition, in the single film structures this study finds out the appropriate film thicknesses with minimum reflectance for cases of gold film and silver film. For a bimetallic silver-gold film structure, in particular, the bimetallic film thicknesses that has the minimum reflectance are found 36 nm for silver and 5 nm for gold. From the results, the use of phase shift would be useful compared to reflectance in determining the SPR configuration because the phase shift becomes more sensitive than reflectance.

Mitigation Techniques of Channel Collisions in the TTFR-Based Asynchronous Spectral Phase-Encoded Optical CDMA System

  • Miyazawa, Takaya;Sasase, Iwao
    • Journal of Communications and Networks
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • In this paper, we propose a chip-level detection and a spectral-slice scheme for the tunable-transmitter/fixed-receiver (TTFR)-based asynchronous spectral phase-encoded optical codedivision multiple-access (CDMA) system combined with timeencoding. The chip-level detection can enhance the tolerance of multiple access interference (MAI) because the channel collision does not occur as long as there is at least one weighted position without MAI. Moreover, the spectral-slice scheme can reduce the interference probability because the MAI with the different frequency has no adverse effects on the channel collision rate. As a result, these techniques mitigate channel collisions. We analyze the channel collision rate theoretically, and show that the proposed system can achieve a lower channel collision rate in comparison to both conventional systems with and without the time-encoding method.

Study on the Interference Phenomena of Nonlinear Optical Signals (비선형 광신호의 간섭현상 연구)

  • 이은성;한재원;박승남;이충희
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.239-243
    • /
    • 1992
  • We have investigeted the interference phenomena of the second harmonic waves of Nd:YAG laser generated at KDP single crystals and the nitrogen CARS signals. To get the phase difference between the successively generated nonlinear optical signals, a phase shifting unit made of BK-7 glass and a high pressure gas cell are used. Coherence lengths of several samples for the nonlinear signals are measured. Adjusting the thickness of the phase shifting unit where the CARS signals make destructive interference completely, the CARS spectrum of nitrogen suppressed over wide wavelength range is obtained. Also, we have observed the change in degree of suppression of the spectrum for the variation of the thickeness of the phase shifting unit.

  • PDF