• Title/Summary/Keyword: optical engine

Search Result 186, Processing Time 0.027 seconds

EFFECT OF FUEL STRATIFICATION ON INITIAL FLAME DEVELOPMENT: PART 1-WITHOUT SWIRL

  • Ohm, I.Y.;Park, C.J.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.519-526
    • /
    • 2006
  • For investigating the effect of fuel stratification on flame propagation, initial flame development and propagation were visualized under different axially stratified states in a port injection SI engine. Stratification was controlled by the combination of the port swirl ratio and injection timing. Experiments were performed in an optical single cylinder engine modified from a production engine and images were captured through the quartz window mounted in the piston by an intensified CCD camera. Firstly in this paper, the characteristics under no port-generated swirl condition, i.e. normal conventional case was studied. Under various stratified conditions, flame images were captured at the pre-set crank angles. These were averaged and processed to characterize the flames propagation. The flame stability was estimated by the weighted average of flame area and luminosity. The stability was also evaluated through the standard deviation of flame area and propagation distance, and mean absolute deviation of propagating direction. Results show that stratification state according to injection timing do not affect on the direction of flame propagation. The flame development and the initial flame stability are strongly dependent on the stratified conditions and the initial flame stability is closely related to the engine stability and lean misfire limit.

Investigation of Fuel Filter Contamination for Turboprop Engine (터보프롭 엔진 연료필터 오염 원인 탐구)

  • Lee, Hyeongwon;Jo, Hana;Lee, Chungryeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.6
    • /
    • pp.87-94
    • /
    • 2019
  • This paper contains the process of investigating the cause of fuel filter contamination of P&WC's PT6A-67A engine. An outline of the fuel filter contamination and configuration of the fuel supply line are specified. The analytical methods were classified into fuel component analysis and solid sediment analysis(EDX, TGA, optical microscope). In summary, the sulfur was detected from fuel tank sealant as a major contamination component. As a follow-up, P&WC and the Agency for Defense Development will conduct engine fuel filter cycle checks and fuel tank cleaning for engine operation.

The Effect of Triple Injection on Engine Performance and Emissions in a HSDI Diesel Engine (3중분사가 HSDI 디젤엔진의 성능과 배기에 미치는 영향)

  • Choi, Wook;Park, Cheol-Woong;Kook, Sang-Hoon;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.40-57
    • /
    • 2004
  • The effects of triple (pilot, main and after) injection on combustion and emission characteristics in a HSDI (High-Speed Direct Injection) diesel engine were investigated using a single-cylinder optical diesel engine equipped with a common-rail injection system. The pilot injection affected the spray and combustion evolution of the following main injection. It was found that the pilot injection reduced the ignition delay, which led to lowered NOx (Nitric Oxides) level, and increased IMEP (Indicated Mean Effective Pressure) due to slow combustion pace during an expansion stroke. The after-injection was shown to be effective in reducing PM (Particulate Matter) even when a small amount of fuel was added. The results suggest that a proper combination of individual injection strategy could bring about a good synergetic effect on engine performance and emission.

A Study of Fiber Optic Automotive Engine Sensor (광섬유 자동차 엔진 센서에 대한 연구)

  • 장준영;정주영;김태권;이완구;박재희
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.244-245
    • /
    • 2000
  • 자동차의 발명은 인류의 기술발전을 가속시켜왔고 중요한 운송수단 및 고도문명사회의 필수적인 이기로 활용되고 있다. 그러나 자동차의 유해배출가스로 인한 환경문제와 자원고갈에 의한 에너지 문제가 중요해짐에 따가 저공해, 고효율, 경제성 등이 요구되어지고 있다. 자동차배출가스 저감을 위해서는 연료와 공기의 혼합과정 개선과 연소상태를 파악하여 연소과정에서 발생되는 생성물을 개선하는 것이 가장 기본적인 대책이다. (중략)

  • PDF

A Study on Combustion Characteristics of Gasoline and Diesel Fuels in a Compression Ignition Engine (압축착화 엔진에서 가솔린과 디젤연료의 연소 특성에 관한 연구)

  • Kim, Kihyun
    • Journal of Power System Engineering
    • /
    • v.21 no.1
    • /
    • pp.63-69
    • /
    • 2017
  • The combustion characteristics of gasoline and diesel were tested in a compression ignition engine. Both fuels were used with same common rail injection system. Combustion experiment showed that low load condition of 0.45 MPa IMEP (indicated mean effective pressure) was tested in metal and optical engines. The gasoline combustion showed higher hydrocarbon and carbon monoxide emissions but lower soot emission compared with diesel combustion. NOx emissions were very high at late injection timing but significantly decreased at early injection timing due to the lean combustion resulted from vigorous mixing process. Direct combustion visualization showed that the diesel combustion was dominated by diffusion combustion exhibiting soot incandescence and the gasoline combustion was mostly consisted of premixed combustion showing blue chemiluminescence.

Fabrication and feasibility estimation of Micro Engine Component (미세 엔진 운용성 검증 및 요소 기술 개발)

  • Lee, Dae-Hoon;Park, Dae-Eun;Choi, Kwon-Hyoung;Yoon, Joon-Bo;Kwon, Se-Jin;Yoon, Eui-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.31-36
    • /
    • 2001
  • As a part of micro engine development feasibility estimation was done through fabrication and test of down scaled combustor and MEMS fabricated spark electrode. In an experimental observation of the down scaled combustion phenomena where flame propagation was observed by optical method and pressure change in combustor which gives the information about the reaction generated thermal energy was recorded and analyzed. Optimal combustor scale was derived to be about 2mm considering increased heat loss effect and thermal energy generation capability. Through the fabrication and discharge test of MEMS electrode effects of electrode width and gap was investigated. Electrode was fabricated by thick PR mold and electroplating. From the result discharge voltage characteristic in sub millimeter scale electrode having thickness of $40{\mu}m$ was obtained. From the result base technology for design and fabrication of micro engine was obtained.

  • PDF

Atomization Characteristics of Fuel Spray in Fuel Injector in Gasoline Direct-Injection Engine (가솔린 직분식 엔진 인젝터의 연료 분무 미립화 특성)

  • Lee, C.S.;Lee, K.H.;Choi, S.C.;Kwon, S.I.
    • Journal of ILASS-Korea
    • /
    • v.4 no.2
    • /
    • pp.33-39
    • /
    • 1999
  • This paper presents the spray atomization characteristics of the high-pressure gasoline injector for the direct-injection gasoline engine. The gasoline sprays of the injector were minted into a pressurized spray chamber with a optical access at various ambient pressures. The atomization characteristics of fuel spray such as mean diameter, mean velocity of droplet were measured by the phase Doppler particle analyzer system. In order to investigate the effect of fuel injection pressure on the quantitative characteristics of spray, the global visualization and experiment of particle measurement in the fuel spray were investigated at 3, 5 and 7 MPa of injection pressure under different ambient pressure in the spray chamber. Based on the results of this work, the fuel injection pressure of fuel injector in gasoline direct-injection engine have influence upon distribution of the mean velocity and droplet size of fuel spray. Also, the influence of injection pressure on the velocity distribution at various measuring location were investigated.

  • PDF

Development of High Pressure & Temperature Constant Volume Chamber for Visualization Study of Fuel Spray and Combustion (연료 분무 및 연소 가시화 연구를 위한 고온 고압 정적 연소실 개발)

  • Kim, Kihyun
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.12-18
    • /
    • 2017
  • Diesel and gasoline engines will be used as main power system of automobiles. Recently, engine downsizing is widely applied to both gasoline and diesel engines in order to improve fuel economy and exhaust emissions. Engine downsizing means small engine combustion chamber with higher combustion pressure. Therefore, spray and combustion process should be investigated under these high pressure and temperature conditions. In this study, constant volume combustion chamber which enables easy optical access from six directions was developed. Combustion chamber was designed to resist maximum pressure of 15 MPa and maximum temperature of 2,000 K. Combustible pre-mixed mixture was introduced into combustion chamber and ignited by spark plugs. High pressure and temperature were implemented by combustion of pre-mixed mixture. Three initial conditions of different pressure and density were tested. High repeatability of combustion process was implemented which was proven by low standard deviation of combustion pressure.

SPRAY CHARACTERISTICS OF DIRECTLY INJECTED LPG

  • Lee, S.W.;Y. Daisho
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.239-245
    • /
    • 2004
  • It has been recognized that alternative fuels such as Liquid Petroleum Gas (LPG) show less polluting combustion characteristics than diesel fuel. Furthermore, engine performance is expected to be nearly equal to that of the diesel engine if direct-injection stratified-charge combustion of the LPG can be adopted in the spark-ignition engine. However, spray characteristics of LPG are quite different from those of diesel fuel. understanding the spray characteristics of LPG and evaporating processes are very important for developing efficient and low emission LPG engines optimized in fuel injection control and combustion processes. In this study, the LPG spray characteristics and evaporating processes were investigated using the Schlieren and Mie scattering optical system and single-hole injectors in a constant volume chamber. The results show that the mixture moves along the impingement wall that reproduced the piston bowl and reaches in ignition spark plug. LPG spray receives more influence of ambient pressure and temperature significantly than that of n-dodecane spray.

In-Cylinder Fuel Behavior According to Fuel Injection Timing and Port Characteristics in an Sl Engine : Part II-With Low/Medium Swirl (가솔린 엔진에서 연료분사시기와 포트특성에 따른 실린더 내 연료거동 : Part II - 저/중 와류의 경우)

  • 엄인용;조용석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.9-17
    • /
    • 2001
  • This paper is the second of 3 companion papers which investigate axial stratification process. In-cylinder fuel behavior has been investigated in the port injected Sl engine by visualizing for the purpose of understanding stratification. Planar laser light sheet from an Nd:YAG laser has been illuminated through the transparent quartz cylinder of the single cylinder optical engine and the Mie scattered light has been captured through the quartz window in the piston head with an ICCD camera. Fuel has been replaced with an air-ethanol mixture to utilize atomized fuel spray fur the visualization purposes. This results have been compared with steady flow concentration measurement. For low/medium swirl port, the early injection makes such a fuel distribution state that is upper-rich, middle-lean and lower-rich along the combustion chamber and cylinder by tumbling motion. On the other hand, the late injection induces upper-rich, middle-lean and lower-rich state due to the short fuel penetration.

  • PDF