• Title/Summary/Keyword: optical emission spectrum(OES)

Search Result 3, Processing Time 0.016 seconds

Nitride/Oxide Etch Spectrum Data Verification by Using Optical Emission Spectroscopy (OES를 이용한 질화막/산화막의 식각 스펙트럼 데이터 분석)

  • Park, Soo-Kyoung;Kang, Dong-Hyun;Han, Seung-Soo;Hong, Sang-Jeen
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.5
    • /
    • pp.353-360
    • /
    • 2012
  • As semiconductor device technology continuously shrinks, low-open area etch process prevails in front-end etch process, such as contact etch as well as one cylindrical storage (OCS) etch. To eliminate over loaded wafer processing test, it is commonly performed to emply diced small coupons at stage of initiative process development. In nominal etch condition, etch responses of whole wafer test and coupon test may be regarded to provide similar results; however, optical emission spectroscopy (OES) which is frequently utilize to monitor etch chemistry inside the chamber cannot be regarded as the same, especially etch mask is not the same material with wafer chuck. In this experiment, we compared OES data acquired from two cases of etch experiments; one with coupon etch tests mounted on photoresist coated wafer and the other with coupons only on the chuck. We observed different behaviors of OES data from the two sets of experiment, and the analytical results showed that careful investigation should be taken place in OES study, especially in coupon size etch.

Optical Emission Characteristics of Atmospheric Pressure Dielectric Barrier Discharge (대기압 유전체배리어방전의 발광특성)

  • Kim, Jin Gi;Kim, Yoon Kee
    • Korean Journal of Materials Research
    • /
    • v.25 no.2
    • /
    • pp.100-106
    • /
    • 2015
  • Plasma properties of dielectric barrier discharges (DBDs) at atmospheric pressure were measured and characterized using optical emission spectroscopy. Optical emissions were measured from argon, nitrogen, or air discharges generated at 5-9 kV using 20 kHz power supply. Emissions from nitrogen molecules were markedly measured, irrespective of discharge gases. The intensity of emission peaks was increased with applied voltage and electrode gap. The short wavelength peaks (315.9 nm and 337.1 nm) measured at the middle of DBDs were significantly increased with applied voltage. The optical emission from DBDs decreased with the addition of oxygen gas, which was especially significant in argon discharge. Emission from oxygen molecules cannot be measured from air discharge and argon discharge with 4.8% oxygen. The emission intensity at 337.1 nm and 357.7 nm related with nitrogen molecule was sensitively changed with electrode types and discharge voltages. However, the pattern of argon emission spectrum was nearly the same, irrespective of electrode type, oxygen content, and discharge voltage.

Study on Methods of Enhancement and Measurement of Corrosion Resistance for Subsea Equipment made of Aluminum (알루미늄으로 제작된 심해 장비의 부식 저항 능력 향상 방법 및 측정 방법 조사)

  • Seo, Youngkyun;Jung, Jung-Yeul
    • Plant Journal
    • /
    • v.16 no.3
    • /
    • pp.47-52
    • /
    • 2020
  • This study investigated the methodologies to enhance the corrosion resistance and the ways to measure for subsea equipment made of aluminum. The methodologies for the anticorrosion were cathodic protection, conversion coating, anodizing and organic coating. The simply analyzed ways to measure the corrosion resistance were Scanning Electron Microscope (SEM), Electrochemical Impedance Spectroscopy (EIS), Glow discharge optical emission spectrum spectroscopy (GD-OES), Fourier Transform Infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), Scanning Vibrating Electrode Technique (SVET), contact angle and interfacial tension. The most widely used tools for increasing the corrosion resistance were the anodizing and the organic coating. Many ways were evenly used to measure corrosion. The methods more frequently utilized were SEM for the surface investigation and the contact angle to evaluate the corrosion resistance.