• Title/Summary/Keyword: optical chip

Search Result 371, Processing Time 0.027 seconds

Fabrication of Planar Lightwave Circuits for Optical Transceiver Connection using Glass Integrated Optics (광 송수신기 연결을 위한 유리집적광학 평면 광 회로 제작)

  • Gang, Dong-Seong;Jeon, Geum-Su;Kim, Hui-Ju;Ban, Jae-Gyeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.6
    • /
    • pp.412-419
    • /
    • 2001
  • In accordance with the PON(passive optical network) could be setup, effective connections with light sources, optical detectors, and optical fibers are the best sensitive points to represent the efficiency of network. Therefore, in this paper we designed and fabricated optical transceiver connection chip that was consisted of channel waveguide, Y-branch, and CWDM on the 2" BK7 glass substrate. This chip can be used for 1.31/1.55${\mu}{\textrm}{m}$ CWDM network and 1.55${\mu}{\textrm}{m}$ region dense WDM network.work.

  • PDF

Intelligent silicon bead chip design for bio-application (바이오 응용을 위한 지능형 실리콘 비드 칩 설계)

  • Moon, Hyung-Geun;Chung, In-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.5
    • /
    • pp.999-1008
    • /
    • 2012
  • Unlike the existing CMOS chip, ISB (Intelligent Silicon Bead) is new concept biochip equipped with optical communication and memory function. It uses the light for power of SoC CMOS and interface with external devices therefore it is possible to miniaturize a chip size and lower the cost. This paper introduces an input protocol and a design of the low power and the low area to transfer the power and the signal through a single optical signal applied from external reader device to bead chip at the same time. It is also verified through simulation and measurement. In addition, low-power PROM is designed for recording and storing ID of a chip and it is successful in obtaining the value of output according to the optical input. Through this study, a new type biochip development can be expected by solving high cost and a limit of miniaturizing a chip area problem of an existing RFID.

10 Gbps Transimpedance Amplifier-Receiver for Optical Interconnects

  • Sangirov, Jamshid;Ukaegbu, Ikechi Augustine;Lee, Tae-Woo;Cho, Mu Hee;Park, Hyo-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.44-49
    • /
    • 2013
  • A transimpedance amplifier (TIA)-optical receiver (Rx) using two intersecting active feedback system with regulated-cascode (RGC) input stage has been designed and implemented for optical interconnects. The optical TIA-Rx chip is designed in a 0.13 ${\mu}m$ CMOS technology and works up to 10 Gbps data rate. The TIA-Rx chip core occupies an area of 0.051 $mm^2$ with power consumption of 16.9 mW at 1.3 V. The measured input-referred noise of optical TIA-Rx is 20 pA/${\surd}$Hz with a 3-dB bandwidth of 6.9 GHz. The proposed TIA-Rx achieved a high gain-bandwidth product per DC power figure of merit of 408 $GHz{\Omega}/mW$.

GaAs OEIC Unit Processes for chip-to-chip Interconnection II (LD structure ; integration) (칩상호 광접속용 GaAs 광전집적회로의 기본 공정 II (LD 구조 ; 집적화 연구))

  • 김창남
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.185-192
    • /
    • 1989
  • It is shown that GaAs/GaAs stripe Roof-Top-Reflector LD is better than cleaved mirror LD by numerical analysis. And surface light emitting device is developed by LPE melt-back growth, which is of good controllability for OEIC. OEIC transmitter using RTR LD structured device and FET has been made and modulated, expected to show good modulation characteristics after solving process problem. Beam-Lead LD mounted on Si carrier has been made and shows low heat-resistance and so long life and good characteristics of LD.

  • PDF

Optical Skin-fat Thickness Measurement Using Miniaturized Chip LEDs: A Preliminary Human Study

  • Ho, Dong-Su;Kim, Ee-Hwa;Hwang, In-Duk;Shin, Kun-Soo;Oh, Jung-Taek;Kim, Beop-Min
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.304-309
    • /
    • 2009
  • We tested the feasibility of measuring fat thickness using a miniaturized chip LED sensor module, testing 12 healthy female subjects. The module consisted of a single detector and four sources at four different source-detector distances (SD). A segmental curve-fitting procedure was applied, using an empirical algorithm obtained by Monte-Carlo simulation, and fat thicknesses were estimated. These thicknesses were compared to computed-tomography (CT) results; the correlation coefficient between CT and optical measurements was 0.932 for bicep sites. The mean percentage error between the two measurements was 13.12%. We conclude that fat thickness can be efficiently measured using the simple sensor module.

A Magneto-optical Trap Below a Dielectric Coated Mirror Surface

  • Yu, Hoon;Lee, Lim;Lee, Kyung-Hyun;Kim, Jung-Bog
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.223-226
    • /
    • 2009
  • A Magneto-Optical Trap (MOT) for $^{87}Rb$ atoms near the surface of a dielectric coated mirror at the top of a small $20{\times}25{\times}40\;mm^3$ cell has been observed. Two beams of $3.3\;mW/cm^2$ were used for optical cooling and an anti-Helmholtz magnetic field with a spatial gradient of 9.1 G/cm was used for magnetic trapping. The thickness of the mirror coated on a cover glass was less than $100{\mu}m$. The mirror covered the top of a cell and the atom-chip was located outside the vacuum in order to exploit the long life time of the mirror and easy operation of the chip. The trapping position was found 5 mm beneath the mirror surface. The number of trapped atoms was roughly $3{\times}10^7$ atoms and the temperature was approximately a few tens mK. In this paper, we describe the construction of the mirror-MOT in detail.

Analysis of the Temperature Dependence of Phosphor Conversion Efficiency in White Light-Emitting Diodes

  • Ryu, Guen-Hwan;Ryu, Han-Youl
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.311-316
    • /
    • 2015
  • We investigate the temperature dependence of the phosphor conversion efficiency (PCE) of the phosphor material used in a white light-emitting diode (LED) consisting of a blue LED chip and yellow phosphor. The temperature dependence of the wall-plug efficiency (WPE) of the blue LED chip and the PCE of phosphor are separately determined by analyzing the measured spectrum of the white LED sample. As the ambient temperature increases from 20 to $80^{\circ}C$, WPE and PCE decrease by about 4.5% and 6%, respectively, which means that the contribution of the phosphor to the thermal characteristics of white LEDs can be more important than that of the blue LED chip. When PCE is decomposed into the Stokes-shift efficiency and the phosphor quantum efficiency (QE), it is found that the Stokes-shift efficiency is only weakly dependent on temperature, while the QE decreases rapidly with temperature. From 20 to $80^{\circ}C$ the phosphor QE decreases by about 7% while the Stokes-shift efficiency changes by less than 1%.

Analysis on the Luminous Efficiency of Phosphor-Conversion White Light-Emitting Diode

  • Ryu, Han-Youl
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.22-26
    • /
    • 2013
  • The author analyzes the luminous efficiency of the phosphor-conversion white light-emitting diode (LED) that consists of a blue LED chip and a yellow phosphor. A theoretical model is derived to find the relation between luminous efficiency (LE) of a white LED, wall-plug efficiency (WPE) of a blue LED chip, and the phosphor absorption ratio of blue light. The presented model enables to obtain the theoretical limit of LE and the lower bound of WPE. When the efficiency model is applied to the measured results of a phosphor-conversion white LED, the limit theoretical value of LE is obtained to be 261 lm/W. In addition, for LE of 88 lm/W at 350 mA, the lower bound of WPE in the blue LED chip is found to be ~34%. The phosphor absorption ratio of blue light was found to have an important role in optimizing the luminous efficiency and colorimetric properties of phosphor-conversion white LEDs.