• 제목/요약/키워드: optical arrays

검색결과 209건 처리시간 0.026초

Ag 나노입자와 나노홀 배열구조를 이용한 초박형 단결정 Si 태양전지의 광흡수 증진 (Optical Absorption Enhancement for Ultrathin c-Si Solar Cells using Ag Nanoparticle and Nano-hole Arrays)

  • 김수정;조윤애;손아름;김동욱
    • Current Photovoltaic Research
    • /
    • 제4권2호
    • /
    • pp.64-67
    • /
    • 2016
  • We investigated the influences of Ag nanoparticle (NP) arrays and surface nanohole (NH) patterns on the optical characteristics of 10-${\mu}m$-thick c-Si wafers using finite-difference time-domain (FDTD) simulations. In particular, we comparatively studied the plasmonic effects of both monomer arrays (MA) and heptamer arrays (HA) consisting of identical Ag NPs. HA improved the optical absorption of the c-Si wafers in much wider wavelength range than MA, with the help of hybridized plasmon modes. The light trapping capability of the NH array pattern is superior to that of the Ag plasmonic NPs. We also found that the addition of the Ag HA on the wafers with surface NH patterns further enhanced optical absorption: the expected short-circuit current density was as high as $34.96mA/cm^2$.

자동 광섬유 정렬 장치의 설계 및 제작에 관한 연구 (A Study on the Design and Development of Automatic Optical Fiber Aligner)

  • 김병희;엄철;최영석
    • 산업기술연구
    • /
    • 제22권B호
    • /
    • pp.241-249
    • /
    • 2002
  • Optical fiber is indispensable for optical communication systems that transmit large volumes of data at high speed, but super precision technology in sub-micron units is required for optical axis adjustment. We developed the automatic optical fiber by image processing and automatic loading system. we have developed 6-axis micro stage system for I/O optical fiber arrays, the initial automatic aligning system software for a input optical array by the image processing technique, fast I/O-synchronous aligning strategy, the automatic loading/unloading system and the automatic UV bonding mechanism. In order to adjust the alignment it used on PC based motion controller, a $10{\mu}m$ repeat-detailed drawing of automatic loading system is developed by a primary line up for high detailed drawing. Also, at this researches used the image processing system and algorithm instead of the existing a primary hand-line up and fiber input array and waveguide chip formed in line by automatic.

  • PDF

Miniband Structure of Quantum Dots based on GaN/AlN Nanowire Arrays

  • Jung, Oui-Chan;Cho, Hyung-Uk;Yi, Jong-Chang
    • Journal of the Optical Society of Korea
    • /
    • 제12권2호
    • /
    • pp.65-68
    • /
    • 2008
  • The miniband structure of a quantum dot lattice based on GaN/AlN nanowire arrays has been investigated using the finite element method and Floquet theorem. The quantum dot modes and the quantum wire modes in the nanowire arrays were graphically verified. The optimum geometries of GaN/AlN quantum wire arrays were investigated by using a correlation between the width of nanowires and the separation of the minibandgap which is to be larger than the thermal energy at room temperature.

UV 성형을 통한 마이크로 렌즈 어레이의 제작 (Fabrication of Microlens Array by UV-molding)

  • 김석민;임지석;강신일;전병희
    • 소성∙가공
    • /
    • 제13권3호
    • /
    • pp.236-241
    • /
    • 2004
  • UV-molded microlens arrays with high replication quality were fabricated using a parametric design method. It is important to maximize the replication quality, because one can obtain the replicated micro-optical components with desired properties by accurate control of the shape. In the present study, nickel mold inserts for microlens arrays with lenses having diameters between $3\mu\textrm{m}$ and $230\mu\textrm{m}$ were fabricated by electroforming process. An UV-molding system was designed and constructed, a simple technique to avoid micro-air bubbles was first suggested, and the effects of the compression pressure and UV-curing dose on the replication quality of UV-molded microlens arrays with a diameter of $14\mu\textrm{m}$ were examined experimentally. Finally, geometrical and optical properties of the replicated microlens arrays were measured and analyzed.

Energy Relaxation Dynamics of Excited Triplet States of Directly Linked Zn(II)Porphyrin Arrays

  • Song, Nam-Woong;Cho, Hyun-Sun;Yoon, Min-Chul;Aratani, Naoki;Osuka, Atsuhiro;Kim, Dong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권2호
    • /
    • pp.271-276
    • /
    • 2002
  • The energy relaxation dynamics of the lowest excited singlet and triplet states of the Zn(II)porphyrin monomer and its directly linked arrays were comparatively investigated with increasing the number of porphyrin moieties. While the fluorescence decay rates and quantum yields of the porphyrin arrays increased with the increase of porphyrin units, their triplet-triplet (T-T) absorption spectra and decay times remained almost the same. The difference in the trends of energy relaxation dynamics between the excited singlet and triplet states has been discussed in view of the electronic orbital configurations.

자동 광 정렬시스템 및 최적 광 정렬알고리즘의 개발 (Development of Automatic Optical Fiber Alignment System and Optimal Aligning Algorithm)

  • 엄철;김병희;최영석
    • 한국정밀공학회지
    • /
    • 제21권4호
    • /
    • pp.194-201
    • /
    • 2004
  • Optical fibers are indispensable fer optical communication systems that transmit large volumes of data at high speed. But the aligning technology under the sub-micron accuracy is required for the precise axis adjustment and connection. For the purpose of precise alignment of the optical arrays, in this research, we have developed the 12-axis(with 8 automated axis and 4 manual axis) automatic optical fiber alignment system including the image processing-based searching system, the automatic loading system using the robot and the suction toot and the automatic UV bonding system. In order to obtain the sub-micron alignment accuracy, two 4-axis PC-based motion controllers and the two 50nm resolution 6-aixs micro-stage actuated by micro stepping motors are adopted. The fiber aligning procedure consists of two steps. Firstly, the optical wave guide and an input optical array are aligned by the 6-axis input micro-stage with the IR camera. The image processing technique is introduced to reduce primary manual aligning time and result in achieving the 50% decrease of aligning time. Secondly, the IR camera is replaced by the output micro-stage and a wave guide and two optical arrays are aligned simultaneously before the laser power intensity delivered to the optical powermeter reached the threshold value. When the aligning procedure is finished, the wave guide and arrays are W bonded. The automatic loading/unloading system is also introduced and the entire wave guide handing time is reduced significantly compared to the former commercial aligning system.

3D Image Correlator using Computational Integral Imaging Reconstruction Based on Modified Convolution Property of Periodic Functions

  • Jang, Jae-Young;Shin, Donghak;Lee, Byung-Gook;Hong, Suk-Pyo;Kim, Eun-Soo
    • Journal of the Optical Society of Korea
    • /
    • 제18권4호
    • /
    • pp.388-394
    • /
    • 2014
  • In this paper, we propose a three-dimensional (3D) image correlator by use of computational integral imaging reconstruction based on the modified convolution property of periodic functions (CPPF) for recognition of partially occluded objects. In the proposed correlator, elemental images of the reference and target objects are picked up by a lenslet array, and subsequently are transformed to a sub-image array which contains different perspectives according to the viewing direction. The modified version of the CPPF is applied to the sub-images. This enables us to produce the plane sub-image arrays without the magnification and superimposition processes used in the conventional methods. With the modified CPPF and the sub-image arrays, we reconstruct the reference and target plane sub-image arrays according to the reconstruction plane. 3D object recognition is performed through cross-correlations between the reference and the target plane sub-image arrays. To show the feasibility of the proposed method, some preliminary experiments on the target objects are carried out and the results are presented. Experimental results reveal that the use of plane sub-image arrays enables us to improve the correlation performance, compared to the conventional method using the computational integral imaging reconstruction algorithm.

B-ISDN용 광휘성통신 다운링크의 앙각에 따른 수신안테나 개선에 관한 연구 (A study on the improvement of receiver antenna as elevation angle on optical satellite communication downlink for B-ISDN)

  • 이상규;한종석;정진호;김영권
    • 전자공학회논문지A
    • /
    • 제32A권3호
    • /
    • pp.1-9
    • /
    • 1995
  • In the B-ISDN using satellite between geo-satellites and earth stations, the laser having high security and broad band width has to be used as a carrier for transmitting massive information of visual, vocal, and high rate data. In this paper, by computer simulation we analyzed the number of optical detector array of optical satellite communication downlink in case of using channel coding and no channel coding for BISDN between geo-satelites and earth stations under clear weather condition. It was supposed that 1 watt semiconductor laser was used and as modulation method, the binary FSK was used. The data rate of 10Gbps was used for B-ISDN. Also, hardly affected by atmospheric absorption 1.55$\mu$m wave-length was used to reduce influence of dispersion and chirp generated at a high speed transmission. We analyzed the received power, SNR and BER. The number of optical detector array was determined to satisfy for the BER less than 10$^{-7}$. Also, we ananlyzed the possibility of reducting the number of optical detector array in case of using channel coding. the number of optical detector array is one in the region where the elevation nangle is between 38$^{\circ}$ and 90$^{\circ}$ and two where the elevation angle is between 33$^{\circ}$ and 37$^{\circ}$ and three where the elevation angle is between 30$^{\circ}$ and 32$^{\circ}$ and increases per one as the elevation angle decreases per 1.deg.. So in the region where the elevation angle is 25$^{\circ}$, the number of optical detector arrays is eight. In case of using channel coding, the number of optical detector arrays decreases to five in the region where the elevation angle is 25$^{\circ}$. Therefore, we remaark the advantage of the channelcoding to decrease the size of received antenna and the number ob optical detector arrays.

  • PDF

Arrays of Microcavity Plasma Devices;Versatile Platform for The Next Generation of Plasma Displays

  • Eden, J.G.;Park, S.J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.473-476
    • /
    • 2006
  • Microcavity plasma devices having characteristic dimensions below $100\;{\mu}m$ have been investigated as a candidate for the next generation of plasma displays. Arrays of inverted pyramid microcavity devices, fabricated in Si with emitting apertures of $(50\;{\mu}m)^2$ and designed for AC or bipolar excitation, demonstrate a luminous efficacy above 6 lm/W at pressures up to and beyond one atmosphere of Ne/Xe mixtures. Also the design of analogous microplasma devices in ceramic multilayer structures or plastic substrates is disccussed.

  • PDF