• Title/Summary/Keyword: optical alignment

Search Result 579, Processing Time 0.029 seconds

Surface characterization of polyimides for LCDs by second-harmonic generation technique (SHG을 이용한 LCD 배향막 표면 특성분석)

  • 정태혁;윤태훈;김재창
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.3
    • /
    • pp.114-122
    • /
    • 1997
  • The surface characteristics of polymers for liquid crystal alignment are studied by optical second-harmonic genertion (SHG) tecnique. Using SHG technique, the LC monolayers on rubbed polymer have already been studied. But, in this paper, the SH signals of polymer were observed and the orientational distribution of oriented polymer was studied. Te SHG experiments for side-chain type and main-chain type polymers are carried out as a function of rubbing strength. The orentational distribution of surface molecules of polymers is compared with the LC pretilt angle measured by the crystal rotation method.

  • PDF

Wide-Viewing Characteristics of Self-Formed Micro-Domains in a Liquid Crystal Display with Dielectric Surface Gratings

  • Yoon, Tae-Young;Park, Jae-Hong;Yu, Chang-Jae;Lee, Sin-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.452-455
    • /
    • 2002
  • We demonstrate the wide-viewing characteristics of a twisted nematic liquid crystal display (LCD) with self-formed micro-domains through the topographical alignment and fringe field effects of dielectric surface gratings (DSG). The mutual optical compensation between micro-domains within each pixel eliminates the contrast inversion phenomenon of TN mode without complex surface treatments.

  • PDF

PVA Technology for High Performance LCD Monitors

  • Kim, Kyeong-Hyeon;Souk, Jun-Hyung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.1-4
    • /
    • 2000
  • We have developed a high performance vertical alignment TFT-LCD, that shows a high light transmittance, and wide viewing angle characteristics with an unusually high contrast ratio. In order to optimize the electro-optical properties we have studied the effect of cell parameters, multi-domain structure and retardation film compensation. With the optimized cell parameters and process conditions, we have achieved a 24" wide UXGA TFT-LCD monitor (16:10 aspect ratio 1920X1200) showing a contrast ratio over 500:1, panel transmittance near 4.5%, response time near 27 ms, and viewing angle higher than 80 degree in all directions.

  • PDF

Development of Low Anchoring Strength Liquid Crystal Mixtures for Bistable Nematic Displays

  • Stoenescu, D.;Lamarque-Forget, S.;Joly, S.;Dubois, J.C.;Martinot-Lagarde, Ph.;Dozov, I.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.97-100
    • /
    • 2005
  • The recent Bistable Nematic ($BiNem{(R)}$) LCD technology presents long term bistability, high level passive matrix multiplexing and high optical quality. The BiNem device, based on anchoring breaking, needs specific low anchoring strength materials - alignment layers and liquid crystal mixtures. We present here our approach to develop nematic mixtures with wide enough temperature range and low zenithal anchoring energy.

  • PDF

A General Performance of PSS-LCDs

  • Mochizuki, Akihiro
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.91-96
    • /
    • 2005
  • In this paper, a general performance of the PSS-LCD or Polarization Shielded Smectic Liquid Crystal Display is discussed. This smectic base LCD does not use any spontaneous polarization, but uses induced polarization just same with current nematic base LCDs. Specific initial molecular alignment as well as specific cell design realizes extremely fast optical response speed with native wide viewing angle. Moreover, this performance is provided by full compatible electronics for current conventional LCDs. A general performance of the PSS-LCD is introduced here.

  • PDF

Investigation on EO Characteristics of SiNx Thin Film Irradiated by Ion-beam (이온 빔 조사된 SiNx 박막의 전기 광학적 특성에 관한 연구)

  • Lee, Sang-Keuk;Oh, Byeong-Yun;Kim, Byoung-Yong;Han, Jin-Woo;Kim, Young-Hwan;Ok, Chul-Ho;Kim, Jong-Hwan;Han, Jeong-Min;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.429-429
    • /
    • 2007
  • For various applications of liquid crystal displays (LCDs), the uniform alignment of liquid crystal (LC) molecules on treated surfaces is significantly important. Generally, a rubbing method has been widely used to align the LC molecules on polyimide (PI) surfaces. Rubbed PI surfaces have suitable characteristics, such as uniform alignment. However, the rubbing method has some drawbacks, such as the generation of electrostatic charges and the creation of contaminating particles. Thus, we strongly recommend a non contact alignment technique for future generations of large high-resolution LCDs. Most recently, the LC aligning capabilities achieved by ultraviolet and ion-beam exposures which are non contact methods, on diamond-like carbon (DLC) inorganic thin film layers have been successfully studied because DLC thin films have a high mechanical hardness, a high electrical resistivity, optical transparency, and chemical inertness. In addition, nitrogen-doped DLC (NDLC) thin films exhibit properties similar to those of the DLC thin films and a higher thermal stability than the DLC thin films because C:N bonding in the NDLC thin filmsis stronger against thermal stress than C:H bonding in the DLC thin films. Our research group has already studied the NDLC thin films by an ion-beam alignment method. The $SiN_x$ thin films deposited by plasma-enhanced chemical vapor deposition are widely used as an insulation layer for a thin film transistor, which has characteristics similar to those of DLC inorganic thin films. Therefore, in this paper, we report on LC alignment effects and pretilt angle generation on a $SiN_x$, thin film treated by ion-beam irradiation for various N ratios

  • PDF

Titanium oxide nanoparticle hybridized liquid crystal display in vertical alignment

  • Lee, Won-Gyu;O, Byeong-Yun;Im, Ji-Hun;Park, Hong-Gyu;Kim, Byeong-Yong;Na, Hyeon-Jae;Seo, Dae-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.160-160
    • /
    • 2009
  • In recent years, the merging of nanomaterials and nano-technology into electro-optic (EO) device technology such as liquid crystal displays (LCDs) has attracted much attention because of their unique electro- and magneto-optic properties and novel display applications. One example of hybrid LC-inorganic systems is semiconductor nanorods added to LC for their strong reorientation effect and tunable refractive index. Doping of nanoparticles in LC or polymers can lead to changes in performance characteristics such as electro-optical, dielectric, memory effect, phase behavior, etc. Due to the tunability of LCDs with mixed inorganic materials, low voltage operation of a LC system can also be achieved using the significant electro-optical effect achieved through suspension of ferroelectric nanoparticles in NLC.

  • PDF

Simple fabrication route for vertically-aligned CZTS nanorod arrays for photoelectrochemical application based on AAO template

  • Kim, Ji-Min;Yang, U-Seok;O, Yun-Jeong;Mun, Ju-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.402.2-402.2
    • /
    • 2016
  • In photoelectrochemical (PEC) water splitting, Cu2ZnSnS4 (CZTS) compound has attracted intense attention as a photocathode due to not only large optical absorption coefficient, but also earth-abundance of constituent elements and suitable band alignment. With rapid development of nanotechnology, one-dimensional nanostructures of CZTS have been investigated as a potential form to achieve high efficiency because the nanostructures are expected to be capable of capturing more light and enhancing charge separation and transport. Here, we report a well-controlled fabrication route for vertically-aligned CZTS nanorod arrays on anodic aluminium oxide (AAO) template via simple sol-gel process followed by deposition of ZnS or CdS buffer layers on the CZTS nanorod to enhance charge separation. The structure, morphology, composition, optical absorption, and PEC properties of the resulting CZTS nanorod samples were characterized using X-ray diffraction, Raman spectroscopy, transmission electron microscopy, energy dispersive X-ray spectrometry, scanning electron microscopy, and UV-vis spectroscopy.

  • PDF

Morphological evolution of ZnO nanowires using varioussubstrates

  • Kar, J.P.;DAS, S.N.;Choi, J.H.;Myoung, J.M.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.27.1-27.1
    • /
    • 2009
  • In recent years, ZnO nanostructures have drawn considerable attentions for the development of futuristic electronic devices due to their superior structural and optical properties. As the growth of ZnO nanowires by MOCVD is a bottom-up technique, the nature of substrates has a vital role for the dimension and alignment of the nanowires. However, in the pursuit of next generation ZnO based nanodevices, it would be highly preferred if well-ordered ZnO nanowires could be obtained on various substrates like sapphire, silicon, glass etc. Vertically aligned nanowires were grown on A and C-plane sapphire substrates, where as nanopencils were obtained on R-plane sapphire substrates. In addition, C-axis oriented vertical nanowires were also found using an interfacial layer(aluminum nitride film) on silicon substrates. On the other hand, long nanowires were found on Ga-doped ZnO film on glass substrates. Structural and optical properties of the ZnO nanowires on various substrates were also investigated.

  • PDF