• Title/Summary/Keyword: opportunistic transmission

Search Result 94, Processing Time 0.031 seconds

Opportunistic Transmit Cognitive Radio Relay Systems with CSI Delay (CSI 지연을 갖는 기회전송 상황 인지 릴레이 시스템)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.39-44
    • /
    • 2010
  • In this paper, we analyze the performance of the cooperative cognitive radio relay system which is adapted the recently highly focused cognitive radio system. The performance comparison is made between the system with and that without the opportunistic transmission relay. Especially the selection combining is considered at the destination for simple implementation. In this case, the effect of the channel state information (CSI) delay, which is caused essentially by the process during the CSI delivery, to the system performance is considered. It is noticed that the performance of the system with the opportunistic relay degrades up to 0.6 dB at a given condition compared to the system without the opportunistic relay. And it is shown that the system performance is more sensitive to the CSI delay compared to the frequency acquisition probability of the cognitive radio relay.

Double Opportunistic Transmit Cooperative Relaying System with GSC in Rayleigh Fading Channels

  • Kim, Nam-Soo;Lee, Ye-Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.270-275
    • /
    • 2010
  • In a conventional opportunistic transmit (COT) cooperative relaying system, only the relays that receive signal-to-noise ratio (SNR) from the source and that exceed the threshold transmit to the destination. The COT system, however, only considers the SNR of the source-relay (S-R) path regardless that the SNR of the relay-destination (R-D) path is the opportunistic transmission condition. For that reason, it is not guaranteed that all the transmitted signals from relays exceed the threshold at the destination. Therefore we propose a double opportunistic transmit (DOT) cooperative relaying system - when both of the received SNR from a source and from a destination exceed the threshold, the relay transmits to the destination. It is shown that the proposed DOT system reduces power consumption by 6.9, 20.9, 32.4, and 41.4 % for K =3, 5, 7, and 9, respectively under the given condition of $P_{out}=1{\times}10^{-3}$ and $\overline{\gamma}_{SR}/\Gamma_{SR}$=30 dB, compared to the COT system. We noticed that the performance of the DOT system is superior to that of the COT system for the identical number of active transmit relays under the same condition of the normalized average SNR of $\overline{\gamma}_{RD}/\Gamma_{RD}$.

Opportunistic Broadcast Protocol for Frequent Topology Changes in Vehicular Ad-hoc Networks (차량 애드혹 네트워크의 빈번한 토폴로지 변경에 적합한 기회적 브로드캐스트 프로토콜)

  • Cha, Si-Ho;Ryu, Minwoo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.2
    • /
    • pp.1-8
    • /
    • 2022
  • The message propagation between vehicles must be efficiently performed to quickly transmit information between vehicles in vehicle ad hoc networks (VANETs). Broadcasting can be the most effective solution for propagating these messages. However, broadcasting can cause broadcast storm problems, which can reduce the performance of the overall network. Therefore, rapid information delivery in VANET requires a method that can propagate messages quickly without causing the broadcast storm problems. This paper proposes a lightweight and opportunistic broadcast (LOB) protocol that leverages the features of opportunistic routing to propagate messages quickly while minimizing the load on the network in VANETs where the network topology changes frequently. LOB does not require any routing information like greedy forwarding scheme, and neighboring nodes at the farthest distance within the range of transmission nodes are likely to be selected as forwarding nodes, and multiple forwarding candidate nodes like opportunistic routing scheme can increase packet transmission rates. Simulation results using ns-2 showed that LOB outperformed existing broadcast protocols in terms of packet rate and packet delay.

Opportunistic Data Relay Scheme for Narrowband Multihop Combat Radio Networks (협대역 다중홉 전투무선망에서 기회적 데이터 중계 기법)

  • Lee, Jongkwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.65-71
    • /
    • 2022
  • In this paper, we propose an opportunistic data relay scheme in narrowband multihop combat radio networks. Narrowband networks have physical restrictions on high-speed transmission. Furthermore, the topology changes dynamically due to the jamming of the enemy, signal interference between friendly forces, and movement of network entities. Therefore, the traditional relay scheme that collects topology information and calculates a relay path before transmission is unsuitable for such networks. Our proposed scheme does not collect topology information and transmits data opportunistically. The scheme can cause unnecessary data relaying that is not related to data delivery to the destination node. However, for small networks, the effect of increasing network throughput by not gathering topology information is much greater than the effect of reducing throughput by unnecessary data relays. We demonstrate the performance superiority of the proposed scheme through simulation in the worst case of network topology.

Contribution-Level-Based Opportunistic Flooding for Wireless Multihop Networks (무선 다중 홉 환경을 위한 기여도 기반의 기회적 플러딩 기법)

  • Byeon, Seung-gyu;Seo, Hyeong-yun;Kim, Jong-deok
    • Journal of KIISE
    • /
    • v.42 no.6
    • /
    • pp.791-800
    • /
    • 2015
  • In this paper, we propose the contribution-level-based opportunistic flooding in a wireless multihop network which achieves outstanding transmission efficiency and reliability. While the potential of the the predetermined relay node to fail in its receipt of broadcast packets is due to the inherent instability in wireless networks, our proposed flooding actually increases network reliability by applying the concept of opportunistic routing, whereby relay-node selection is dependent on the transmission result. Additionally, depending on the contribution level for the entire network, the proposed technique enhances transmission efficiency through priority adjustment and the removal of needless relay nodes. We use the NS-3 simulator to compare the proposed scheme with dominant pruning. The analysis results show the improved performance in both cases: by 35% compared with blind flooding from the perspective of the transmission efficiency, and by 20~70% compared to dominant pruning from the perspective of the reliability.

Dual-Hop Amplify-and-Forward Multi-Relay Maximum Ratio Transmission

  • Erdogan, Eylem;Gucluoglu, Tansal
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • In this paper, the performance of dual-hop multi-relay maximum ratio transmission (MRT) over Rayleigh flat fading channels is studied with both conventional (all relays participate the transmission) and opportunistic (best relay is selected to maximize the received signal-to-noise ratio (SNR)) relaying. Performance analysis starts with the derivation of the probability density function, cumulative distribution function and moment generating function of the SNR. Then, both approximate and asymptotic expressions of symbol error rate (SER) and outage probability are derived for arbitrary numbers of antennas and relays. With the help of asymptotic SER and outage probability, diversity and array gains are obtained. In addition, impact of imperfect channel estimations is investigated and optimum power allocation factors for source and relay are calculated. Our analytical findings are validated by numerical examples which indicate that multi-relay MRT can be a low complexity and reliable option in cooperative networks.

Increasing Throughput in Energy-Based Opportunistic Spectrum Access Energy Harvesting Cognitive Radio Networks

  • Yao, Yuanyuan;Yin, Changchuan;Song, Xiaoshi;Beaulieu, Norman C.
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.340-350
    • /
    • 2016
  • The performance of large-scale cognitive radio (CR) networks with secondary users sustained by opportunistically harvesting radio-frequency (RF) energy from nearby primary transmissions is investigated. Using an advanced RF energy harvester, a secondary user is assumed to be able to collect ambient primary RF energy as long as it lies inside the harvesting zone of an active primary transmitter (PT). A variable power (VP) transmission mode is proposed, and an energy-based opportunistic spectrum access (OSA) strategy is considered, under which a secondary transmitter (ST) is allowed to transmit only if its harvested energy is larger than a predefined transmission threshold and it is outside the guard zones of all active PTs. The transmission probability of the STs is derived. The outage probabilities and the throughputs of the primary and the secondary networks, respectively, are characterized. Compared with prior work, the throughput can be increased by as much as 29%. The energy-based OSA strategy can be generally applied to a non-CR setup, where distributed power beacons (PBs) are deployed to power coexisting wireless signal transmitters (WSTs) in a wireless powered sensor network.

Joint Opportunistic Spectrum Access and Optimal Power Allocation Strategies for Full Duplex Single Secondary User MIMO Cognitive Radio Network

  • Yue, Wenjing;Ren, Yapeng;Yang, Zhen;Chen, Zhi;Meng, Qingmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.3887-3907
    • /
    • 2015
  • This paper introduces a full duplex single secondary user multiple-input multiple-output (FD-SSU-MIMO) cognitive radio network, where secondary user (SU) opportunistically accesses the authorized spectrum unoccupied by primary user (PU) and transmits data based on FD-MIMO mode. Then we study the network achievable average sum-rate maximization problem under sum transmit power budget constraint at SU communication nodes. In order to solve the trade-off problem between SU's sensing time and data transmission time based on opportunistic spectrum access (OSA) and the power allocation problem based on FD-MIMO transmit mode, we propose a simple trisection algorithm to obtain the optimal sensing time and apply an alternating optimization (AO) algorithm to tackle the FD-MIMO based network achievable sum-rate maximization problem. Simulation results show that our proposed sensing time optimization and AO-based optimal power allocation strategies obtain a higher achievable average sum-rate than sequential convex approximations for matrix-variable programming (SCAMP)-based power allocation for the FD transmission mode, as well as equal power allocation for the half duplex (HD) transmission mode.

Opportunistic Reporting-based Sensing-Reporting-Throughput Optimization Scheme for Cooperative Cognitive Radio Networks

  • So, Jaewoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1319-1335
    • /
    • 2017
  • This paper proposes an opportunistic reporting-based sensing-reporting-throughput optimization scheme that maximizes the spectral efficiency of secondary users (SUs) in cooperative cognitive radio networks with a soft combining rule. The performance of cooperative spectrum sensing depends on the sensing time, the reporting time of transmitting sensing results, and the fusion scheme. While longer sensing time and reporting time improve the sensing performance, this shortens the allowable data transmission time, which in turn degrades the spectral efficiency of SUs. The proposed scheme adopts an opportunistic reporting scheme to restrain the reporting overhead and it jointly controls the sensing-reporting overhead in order to increase the spectral efficiency of SUs. We show that there is a trade-off between the spectral efficiency of SUs and the overheads of cooperative spectrum sensing. The numerical results demonstrate that the proposed scheme significantly outperforms the conventional sensing-throughput optimization schemes when there are many SUs. Moreover, the numerical results show that the sensing-reporting time should be jointly optimized in order to maximize the spectral efficiency of SUs.

On the Performance of Incremental Opportunistic Relaying with Differential Modulation over Rayleigh Fading Channels

  • Bao, Vo Nguyen Quoc;Kong, Hyung-Yun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7A
    • /
    • pp.731-742
    • /
    • 2010
  • We propose an incremental relaying protocol in conjunction with opportunistic communication for differential modulation with an aim to make efficient use of the degrees of freedom of the channels by exploiting a imited feedback signal from the destination. In particular, whenever the direct link from the source to the destination is not favorable to decoding, the destination will request the help from the opportunistic relay (if any). The performance of the proposed system is derived in terms of average bit error probability and achievable spectral efficiency. The analytic results show that the system assisted by the opportunistic relaying can achieve full diversity at low SNR regime and exhibits a 30㏈ gain relative to direct transmission, assuming single-antenna terminals. We also determine the effect of power allocation on the bit error probability BEP) performance of our relaying scheme. We conclude with a discussion on the relationship between the given thresholds and channel resource savings. Monte-Carlo simulations are performed to verify the analysis.