• 제목/요약/키워드: opinion extraction

검색결과 51건 처리시간 0.026초

A Review of the Opinion Target Extraction using Sequence Labeling Algorithms based on Features Combinations

  • Aziz, Noor Azeera Abdul;MohdAizainiMaarof, MohdAizainiMaarof;Zainal, Anazida;HazimAlkawaz, Mohammed
    • 인터넷정보학회논문지
    • /
    • 제17권5호
    • /
    • pp.111-119
    • /
    • 2016
  • In recent years, the opinion analysis is one of the key research fronts of any domain. Opinion target extraction is an essential process of opinion analysis. Target is usually referred to noun or noun phrase in an entity which is deliberated by the opinion holder. Extraction of opinion target facilitates the opinion analysis more precisely and in addition helps to identify the opinion polarity i.e. users can perceive opinion in detail of a target including all its features. One of the most commonly employed algorithms is a sequence labeling algorithm also called Conditional Random Fields. In present article, recent opinion target extraction approaches are reviewed based on sequence labeling algorithm and it features combinations by analyzing and comparing these approaches. The good selection of features combinations will in some way give a good or better accuracy result. Features combinations are an essential process that can be used to identify and remove unneeded, irrelevant and redundant attributes from data that do not contribute to the accuracy of a predictive model or may in fact decrease the accuracy of the model. Hence, in general this review eventually leads to the contribution for the opinion analysis approach and assist researcher for the opinion target extraction in particular.

Opinion Extraction based on Syntactic Pieces

  • Aoki, Suguru;Yamamoto, Kazuhide
    • 한국언어정보학회:학술대회논문집
    • /
    • 한국언어정보학회 2007년도 정기학술대회
    • /
    • pp.76-85
    • /
    • 2007
  • This paper addresses a task of opinion extraction from given documents and its positive/negative classification. We propose a sentence classification method using a notion of syntactic piece. Syntactic piece is a minimum unit of structure, and is used as an alternative processing unit of n-gram and whole tree structure. We compute its semantic orientation, and classify opinion sentences into positive or negative. We have conducted an experiment on more than 5000 opinion sentences of multiple domains, and have proven that our approach attains high performance at 91% precision.

  • PDF

FEROM: Feature Extraction and Refinement for Opinion Mining

  • Jeong, Ha-Na;Shin, Dong-Wook;Choi, Joong-Min
    • ETRI Journal
    • /
    • 제33권5호
    • /
    • pp.720-730
    • /
    • 2011
  • Opinion mining involves the analysis of customer opinions using product reviews and provides meaningful information including the polarity of the opinions. In opinion mining, feature extraction is important since the customers do not normally express their product opinions holistically but separately according to its individual features. However, previous research on feature-based opinion mining has not had good results due to drawbacks, such as selecting a feature considering only syntactical grammar information or treating features with similar meanings as different. To solve these problems, this paper proposes an enhanced feature extraction and refinement method called FEROM that effectively extracts correct features from review data by exploiting both grammatical properties and semantic characteristics of feature words and refines the features by recognizing and merging similar ones. A series of experiments performed on actual online review data demonstrated that FEROM is highly effective at extracting and refining features for analyzing customer review data and eventually contributes to accurate and functional opinion mining.

k-Structure를 이용한 한국어 상품평 단어 자동 추출 방법 (Automatic Extraction of Opinion Words from Korean Product Reviews Using the k-Structure)

  • 강한훈;유성준;한동일
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권6호
    • /
    • pp.470-479
    • /
    • 2010
  • 감정어 추출과 관련하여 기존 영어권 연구에서 제시된 방법의 대부분은 한국어에 직접 적용이 쉽지 않다. 한국어권 연구에서 제시된 방법 중 수작업에 의한 방법은 감정어 추출에 많은 시간이 걸린다는 문제점이 있다. 영어 시소러스 기반 한국어 감정어 추출 기술은 한국어와 영어 단어간 일대일 부정합에서부터 기인하는 정확도의 저하를 제고해야 하는 과제를 갖고 있다. 한국어 구문 분석기를 기반으로 한 연구는 출현 빈도가 낮은 감정어를 선정하지 못할 수 있는 문제점을 내포하고 있다. 본 논문에서는 한국어 상품평 중 단순한 문장에서 감정어를 자동으로 추출하는 데 있어 기존에 제안된 한국어권 연구에 상호 보완적으로 정확도를 향상시킬 수 있는 k-Structure(k=5 또는 8) 기법을 제안한다. 단순한 문장이라 함은 패턴 길이를 최대 3으로 한다. 이는 평가 대상 상품(예를 들어 '카메라')의 속성 명 f (예를 들어 카메라의 '배터리')를 기준으로 ${\pm}2$의 거리에 감정어가 포함되어 있는 문장을 의미한다. 성능 실험은 국내 주요 쇼핑몰로부터 수집한 1,868개의 상품평을 대상으로 미리 주어진 8개의 속성 명에 대한 감정어를 k-Structure를 이용하여 자동으로 추출하고 그 정확도를 평가하였다. 그 결과, k=5일 경우 평균 79.0%의 재현률, 87.0%의 정확률을 보였고, k=8일 경우 평균 92.35%의 재현률, 89.3%의 정확률을 얻을 수 있었다. 또한, 영어권 연구에서 제안된 방법 중 PMI-IR(Pointwise Mutual Information-Information Retrieval) 기법을 이용하여 실험을 수행하였다. 이 결과, 평균 55%의 재현률과 57%의 정확률을 보였다.

웹2.0에서 의견정보의 실시간 모니터링을 위한 웹 콘텐츠 마이닝 시스템 (Web Contents Mining System for Real-Time Monitoring of Opinion Information based on Web 2.0)

  • 김영춘;주해종;최혜길;조문택;김영백;이상용
    • 한국지능시스템학회논문지
    • /
    • 제21권1호
    • /
    • pp.68-79
    • /
    • 2011
  • 본 연구에서 제안하는 시스템은 인터넷 상에 존재하는 여러 웹사이트들에 흩어져 있는 웹 콘텐츠에서 사용자 의견 정보들을 자동 추출 및 분석함으로써, 긍정/부정 의견별로 검색 및 통계를 확인할 수 있는 의견 검색 서비스를 제공한다. 그 결과 의견 검색 사용자들은 특정 키워드에 대하여 다른 사용자들의 의견을 손쉽게 한눈에 검색 및 모니터링하는 시스템을 용이하게 사용할 수 있으며, 웹 콘텐츠에서의 의견 추출 및 분석하는 기능을 제공받는다. 제안한 기법들은 다른 기법들과의 비교 실험을 수행하여 실제 성능이 우수함을 증명하였다. 성능 평가는 긍정/부정 의견 정보를 추출하는 기능의 성능 평가, 다국어 정보 검색을 위한 동적 윈도우 기법과 토크나이저 기법을 적용한 성능 평가, 그리고 정확한 다국어 음차표기를 추출 기법에 성능 평가를 실시하였다. 그 적용 사례로 대표적인 영화 리뷰 문장과 위키디피아 실험 데이터를 대상으로 실험하고 그 결과를 분석하였다.

Word2vec을 이용한 오피니언 마이닝 성과분석 연구 (Performance Analysis of Opinion Mining using Word2vec)

  • 어균선;이건창
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2018년도 춘계 종합학술대회 논문집
    • /
    • pp.7-8
    • /
    • 2018
  • 본 연구에서는 Word2vec을 머신러닝 분류기를 이용해 효율적인 오피니언 마이닝 방법을 제안한다. 본 연구의 목적을 위해 BOW(Bag-of-Words) 방법과 Word2vec방법을 이용해 속성 셋을 구성했다. 구성된 속성 셋은 Decision tree, Logistic regression, Support vector machine, Random forest를 이용해 오피니언 마이닝을 수행했다. 연구 결과, Word2vec 방법과 RF분류기가 가장 높은 정확도를 나타냈다. 그리고 Word2vec 방법이 BOW방법 보다 각 분류기에서 높은 성능을 나타냈다.

  • PDF

Improvement of recommendation system using attribute-based opinion mining of online customer reviews

  • Misun Lee;Hyunchul Ahn
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권12호
    • /
    • pp.259-266
    • /
    • 2023
  • 본 논문에서는 속성기반 오피니언 마이닝(ABOM)을 적용한 협업 필터링의 정확도 성능을 개선할 수 있는 알고리즘을 제안한다. 실험을 위해 국내 스마트폰 사용자의 스마트폰 앱에 대한 총 1,227건의 온라인 소비자 리뷰 데이터가 분석에 사용되었다. KKMA(꼬꼬마)분석기를 이용하여 형태소 분석 및 KOSAC를 사용하여 감성어 분석 후 LDA 토픽 모델링을 사용하여 속성 추출한 가중치 값을 부여한 리뷰별로 토픽 모델링 결과를 이용하여 협업필터링의 평점과 감성스코어의 평점을 합산한 평균값 정확도 오차를 계산한 통계모형 성능 평가인 MAE, MAPE, RMSE를 사용하였다. 실험을 통해 추천 알고리즘 중 전통적인 협업필터링과 LDA 속성 추출과 감성분석을 결합한 속성기반 오피니언 마이닝(Aspect-Based Opinion Mining, ABOM) 기법을 결합하여 온라인 고객의 앱 평점(APP_Score) 대한 정확도를 예측하였다. 분석 결과 전통적인 협업필터링을 구현한 평점의 정확도 보다 속성기반 오피니언 마이닝 CF를 적용한 평점의 예측 정확도가 더 우수한 것으로 나타났다.

잠재 구조적 SVM을 활용한 감성 분석기 (Sentiment Analysis using Latent Structural SVM)

  • 양승원;이창기
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권5호
    • /
    • pp.240-245
    • /
    • 2016
  • 본 연구에서는 댓글(음식점/영화/모바일제품) 및 도메인이 없는 트위터 데이터에 대한 감성 분석을 수행하고, 각 문장에 대한 object(or aspect)와 opinion word를 추출하는 시스템을 개발하고 평가한다. 감성 분석을 수행하기 위해 Structural SVM 알고리즘과 Latent Structural SVM 알고리즘을 사용하여 비교 평가하였으며, 실험 결과 Latent Structural SVM이 더 좋은 성능을 보였으며, 구문 분석을 통해 분석된 VP, NP정보를 활용하여 object(aspect)와 opinion word를 추출할 수 있음을 보였다. 또한, 실제 서비스에 활용하기 위해 감성 탐지기를 개발하고 평가하였다.

Support Vector Machine을 이용한 온라인 리뷰의 용어기반 감성분류모형 (Terms Based Sentiment Classification for Online Review Using Support Vector Machine)

  • 이태원;홍태호
    • 경영정보학연구
    • /
    • 제17권1호
    • /
    • pp.49-64
    • /
    • 2015
  • SNS의 확산으로 온라인 상점에서는 상품에 대한 주관적인 의견이 내포되어 있는 고객리뷰 정보가 빠르게 생성되고 확산되어 다른 고객들에게 큰 영향을 미치고 있다. 이와 더불어, 고객들의 긍정적 또는 부정적 의견을 분석하여 개선방안을 모색하려는 오피니언마이닝(opinion mining)이 주목 받고 있다. 고객리뷰에 내포된 감성정보를 가진 용어들은 감성분류를 하는데 가장 중요한 역할을 하기 때문에 영향력이 높은 용어를 선별하는 것이 가장 중요하다. 본 연구에서는 품사태깅을 이용하여 최적의 용어들을 선별하고 용어정보에 기반한 문서수준에서의 감성분류모형을 제안하고자 한다. 고객리뷰의 감성분류모형에 대표적인 기계학습기법인 SVM을 적용하고, SVM의 입력변수 선정과정에 품사태깅 방식과 용어추출기법을 다르게 조합하고 사용하여 긍정적/부정적 문서를 분류하였다. 본 연구에서 제안한 감성분류모형의 성과를 검증하기 위해 아마존(Amazon.com)의 영화와 도서에 대한 고객리뷰 80,000개를 수집하여 불필요한 용어들을 제거한 후 품사태깅을 통해 용어를 추출하였다. 추출된 용어는 문서빈도, TF-IDF, 정보획득량, 카이제곱 통계량의 값을 산출하여 값을 통해 용어들을 순위화하고, 각 상위 20개에 해당하는 최적의 용어를 선정한 후 SVM을 이용하였다. 제안된 감성분류모형을 통해 기존 연구에서 언급한 형용사만을 사용한 예측변수와 4품사를 사용한 예측변수에서의 실험결과를 통해 비교 분석하였다. 카이제곱 통계량 기반의 감성분류모형이 다른 모형보다 예측성과가 가장 우수하게 나타나는 것을 확인할 수 있었다. 본 연구에서 제안된 문서수준에서의 용어기반 감성분류모형을 이용함으로써 온라인 상점에서의 서비스 개선과 경쟁력 확보에 많은 도움이 될 것으로 기대된다.

의견정보 모니터링을 위한 웹 마이닝 시스템에 관한 연구 (A Study on Web Mining System for Real-Time Monitoring of Opinion Information Based on Web 2.0)

  • 주해종;홍봉화;정복철
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권1호
    • /
    • pp.149-157
    • /
    • 2010
  • 최근에 인터넷 사용이 점차 활발해 짐에 따라, 다른 사람들이 인터넷 상에 올려놓은 의견정보를 참조하고자 하는 수요가 높아지고 있다. 하지만, 이러한인터넷상에존재하는의견들은개개의웹사이트들에만존재하여, 이러한 의견정보들을 사용하고자 할 경우에는 사용자가 일일이 이러한 개개의 모든 웹사이트를 수동으로 찾아보아야 하는 번거로움이 존재하는 문제점이 있다. 본 논문은 웹 콘텐츠에서의 통계기반 웹 마이닝(Web Mining)을 통한 의견 추출 및 분석 시스템에 관한 것으로, 인터넷 상에 존재하는 여러 웹사이트들에 흩어져 있는 웹문서에서 사용자 의견정보들을 자동으로 추출 및 분석한다. 또한, 긍정/부정 의견별로 실시간으로 검색 및 통계를 확인할 수 있는 의견정보 검색 서비스를 간편하게 제공할수 있으며, 의견정보 검색 사용자들은 특정 키워드에 대하여 다른 사용자들의 의견정보를 손쉽게 실시간으로 검색 및 모니터링(Monitoring)할 수 있는 시스템이다. 제안한 기법들은 기존의 다른 기법들과의 비교 실험을 수행하여 실제 성능이 우수함을 증명하였다. 성능 평가는 긍정/부정 의견정보를 추출하는 기능의 성능 평가를 실시하였다. 그 적용 사례로 대표적인 영화 리뷰 문장 실험 데이터를 대상으로 실험하고 그 결과를 분석하였다.