Aziz, Noor Azeera Abdul;MohdAizainiMaarof, MohdAizainiMaarof;Zainal, Anazida;HazimAlkawaz, Mohammed
인터넷정보학회논문지
/
제17권5호
/
pp.111-119
/
2016
In recent years, the opinion analysis is one of the key research fronts of any domain. Opinion target extraction is an essential process of opinion analysis. Target is usually referred to noun or noun phrase in an entity which is deliberated by the opinion holder. Extraction of opinion target facilitates the opinion analysis more precisely and in addition helps to identify the opinion polarity i.e. users can perceive opinion in detail of a target including all its features. One of the most commonly employed algorithms is a sequence labeling algorithm also called Conditional Random Fields. In present article, recent opinion target extraction approaches are reviewed based on sequence labeling algorithm and it features combinations by analyzing and comparing these approaches. The good selection of features combinations will in some way give a good or better accuracy result. Features combinations are an essential process that can be used to identify and remove unneeded, irrelevant and redundant attributes from data that do not contribute to the accuracy of a predictive model or may in fact decrease the accuracy of the model. Hence, in general this review eventually leads to the contribution for the opinion analysis approach and assist researcher for the opinion target extraction in particular.
This paper addresses a task of opinion extraction from given documents and its positive/negative classification. We propose a sentence classification method using a notion of syntactic piece. Syntactic piece is a minimum unit of structure, and is used as an alternative processing unit of n-gram and whole tree structure. We compute its semantic orientation, and classify opinion sentences into positive or negative. We have conducted an experiment on more than 5000 opinion sentences of multiple domains, and have proven that our approach attains high performance at 91% precision.
Opinion mining involves the analysis of customer opinions using product reviews and provides meaningful information including the polarity of the opinions. In opinion mining, feature extraction is important since the customers do not normally express their product opinions holistically but separately according to its individual features. However, previous research on feature-based opinion mining has not had good results due to drawbacks, such as selecting a feature considering only syntactical grammar information or treating features with similar meanings as different. To solve these problems, this paper proposes an enhanced feature extraction and refinement method called FEROM that effectively extracts correct features from review data by exploiting both grammatical properties and semantic characteristics of feature words and refines the features by recognizing and merging similar ones. A series of experiments performed on actual online review data demonstrated that FEROM is highly effective at extracting and refining features for analyzing customer review data and eventually contributes to accurate and functional opinion mining.
감정어 추출과 관련하여 기존 영어권 연구에서 제시된 방법의 대부분은 한국어에 직접 적용이 쉽지 않다. 한국어권 연구에서 제시된 방법 중 수작업에 의한 방법은 감정어 추출에 많은 시간이 걸린다는 문제점이 있다. 영어 시소러스 기반 한국어 감정어 추출 기술은 한국어와 영어 단어간 일대일 부정합에서부터 기인하는 정확도의 저하를 제고해야 하는 과제를 갖고 있다. 한국어 구문 분석기를 기반으로 한 연구는 출현 빈도가 낮은 감정어를 선정하지 못할 수 있는 문제점을 내포하고 있다. 본 논문에서는 한국어 상품평 중 단순한 문장에서 감정어를 자동으로 추출하는 데 있어 기존에 제안된 한국어권 연구에 상호 보완적으로 정확도를 향상시킬 수 있는 k-Structure(k=5 또는 8) 기법을 제안한다. 단순한 문장이라 함은 패턴 길이를 최대 3으로 한다. 이는 평가 대상 상품(예를 들어 '카메라')의 속성 명 f (예를 들어 카메라의 '배터리')를 기준으로 ${\pm}2$의 거리에 감정어가 포함되어 있는 문장을 의미한다. 성능 실험은 국내 주요 쇼핑몰로부터 수집한 1,868개의 상품평을 대상으로 미리 주어진 8개의 속성 명에 대한 감정어를 k-Structure를 이용하여 자동으로 추출하고 그 정확도를 평가하였다. 그 결과, k=5일 경우 평균 79.0%의 재현률, 87.0%의 정확률을 보였고, k=8일 경우 평균 92.35%의 재현률, 89.3%의 정확률을 얻을 수 있었다. 또한, 영어권 연구에서 제안된 방법 중 PMI-IR(Pointwise Mutual Information-Information Retrieval) 기법을 이용하여 실험을 수행하였다. 이 결과, 평균 55%의 재현률과 57%의 정확률을 보였다.
본 연구에서 제안하는 시스템은 인터넷 상에 존재하는 여러 웹사이트들에 흩어져 있는 웹 콘텐츠에서 사용자 의견 정보들을 자동 추출 및 분석함으로써, 긍정/부정 의견별로 검색 및 통계를 확인할 수 있는 의견 검색 서비스를 제공한다. 그 결과 의견 검색 사용자들은 특정 키워드에 대하여 다른 사용자들의 의견을 손쉽게 한눈에 검색 및 모니터링하는 시스템을 용이하게 사용할 수 있으며, 웹 콘텐츠에서의 의견 추출 및 분석하는 기능을 제공받는다. 제안한 기법들은 다른 기법들과의 비교 실험을 수행하여 실제 성능이 우수함을 증명하였다. 성능 평가는 긍정/부정 의견 정보를 추출하는 기능의 성능 평가, 다국어 정보 검색을 위한 동적 윈도우 기법과 토크나이저 기법을 적용한 성능 평가, 그리고 정확한 다국어 음차표기를 추출 기법에 성능 평가를 실시하였다. 그 적용 사례로 대표적인 영화 리뷰 문장과 위키디피아 실험 데이터를 대상으로 실험하고 그 결과를 분석하였다.
본 연구에서는 Word2vec을 머신러닝 분류기를 이용해 효율적인 오피니언 마이닝 방법을 제안한다. 본 연구의 목적을 위해 BOW(Bag-of-Words) 방법과 Word2vec방법을 이용해 속성 셋을 구성했다. 구성된 속성 셋은 Decision tree, Logistic regression, Support vector machine, Random forest를 이용해 오피니언 마이닝을 수행했다. 연구 결과, Word2vec 방법과 RF분류기가 가장 높은 정확도를 나타냈다. 그리고 Word2vec 방법이 BOW방법 보다 각 분류기에서 높은 성능을 나타냈다.
본 논문에서는 속성기반 오피니언 마이닝(ABOM)을 적용한 협업 필터링의 정확도 성능을 개선할 수 있는 알고리즘을 제안한다. 실험을 위해 국내 스마트폰 사용자의 스마트폰 앱에 대한 총 1,227건의 온라인 소비자 리뷰 데이터가 분석에 사용되었다. KKMA(꼬꼬마)분석기를 이용하여 형태소 분석 및 KOSAC를 사용하여 감성어 분석 후 LDA 토픽 모델링을 사용하여 속성 추출한 가중치 값을 부여한 리뷰별로 토픽 모델링 결과를 이용하여 협업필터링의 평점과 감성스코어의 평점을 합산한 평균값 정확도 오차를 계산한 통계모형 성능 평가인 MAE, MAPE, RMSE를 사용하였다. 실험을 통해 추천 알고리즘 중 전통적인 협업필터링과 LDA 속성 추출과 감성분석을 결합한 속성기반 오피니언 마이닝(Aspect-Based Opinion Mining, ABOM) 기법을 결합하여 온라인 고객의 앱 평점(APP_Score) 대한 정확도를 예측하였다. 분석 결과 전통적인 협업필터링을 구현한 평점의 정확도 보다 속성기반 오피니언 마이닝 CF를 적용한 평점의 예측 정확도가 더 우수한 것으로 나타났다.
본 연구에서는 댓글(음식점/영화/모바일제품) 및 도메인이 없는 트위터 데이터에 대한 감성 분석을 수행하고, 각 문장에 대한 object(or aspect)와 opinion word를 추출하는 시스템을 개발하고 평가한다. 감성 분석을 수행하기 위해 Structural SVM 알고리즘과 Latent Structural SVM 알고리즘을 사용하여 비교 평가하였으며, 실험 결과 Latent Structural SVM이 더 좋은 성능을 보였으며, 구문 분석을 통해 분석된 VP, NP정보를 활용하여 object(aspect)와 opinion word를 추출할 수 있음을 보였다. 또한, 실제 서비스에 활용하기 위해 감성 탐지기를 개발하고 평가하였다.
SNS의 확산으로 온라인 상점에서는 상품에 대한 주관적인 의견이 내포되어 있는 고객리뷰 정보가 빠르게 생성되고 확산되어 다른 고객들에게 큰 영향을 미치고 있다. 이와 더불어, 고객들의 긍정적 또는 부정적 의견을 분석하여 개선방안을 모색하려는 오피니언마이닝(opinion mining)이 주목 받고 있다. 고객리뷰에 내포된 감성정보를 가진 용어들은 감성분류를 하는데 가장 중요한 역할을 하기 때문에 영향력이 높은 용어를 선별하는 것이 가장 중요하다. 본 연구에서는 품사태깅을 이용하여 최적의 용어들을 선별하고 용어정보에 기반한 문서수준에서의 감성분류모형을 제안하고자 한다. 고객리뷰의 감성분류모형에 대표적인 기계학습기법인 SVM을 적용하고, SVM의 입력변수 선정과정에 품사태깅 방식과 용어추출기법을 다르게 조합하고 사용하여 긍정적/부정적 문서를 분류하였다. 본 연구에서 제안한 감성분류모형의 성과를 검증하기 위해 아마존(Amazon.com)의 영화와 도서에 대한 고객리뷰 80,000개를 수집하여 불필요한 용어들을 제거한 후 품사태깅을 통해 용어를 추출하였다. 추출된 용어는 문서빈도, TF-IDF, 정보획득량, 카이제곱 통계량의 값을 산출하여 값을 통해 용어들을 순위화하고, 각 상위 20개에 해당하는 최적의 용어를 선정한 후 SVM을 이용하였다. 제안된 감성분류모형을 통해 기존 연구에서 언급한 형용사만을 사용한 예측변수와 4품사를 사용한 예측변수에서의 실험결과를 통해 비교 분석하였다. 카이제곱 통계량 기반의 감성분류모형이 다른 모형보다 예측성과가 가장 우수하게 나타나는 것을 확인할 수 있었다. 본 연구에서 제안된 문서수준에서의 용어기반 감성분류모형을 이용함으로써 온라인 상점에서의 서비스 개선과 경쟁력 확보에 많은 도움이 될 것으로 기대된다.
최근에 인터넷 사용이 점차 활발해 짐에 따라, 다른 사람들이 인터넷 상에 올려놓은 의견정보를 참조하고자 하는 수요가 높아지고 있다. 하지만, 이러한인터넷상에존재하는의견들은개개의웹사이트들에만존재하여, 이러한 의견정보들을 사용하고자 할 경우에는 사용자가 일일이 이러한 개개의 모든 웹사이트를 수동으로 찾아보아야 하는 번거로움이 존재하는 문제점이 있다. 본 논문은 웹 콘텐츠에서의 통계기반 웹 마이닝(Web Mining)을 통한 의견 추출 및 분석 시스템에 관한 것으로, 인터넷 상에 존재하는 여러 웹사이트들에 흩어져 있는 웹문서에서 사용자 의견정보들을 자동으로 추출 및 분석한다. 또한, 긍정/부정 의견별로 실시간으로 검색 및 통계를 확인할 수 있는 의견정보 검색 서비스를 간편하게 제공할수 있으며, 의견정보 검색 사용자들은 특정 키워드에 대하여 다른 사용자들의 의견정보를 손쉽게 실시간으로 검색 및 모니터링(Monitoring)할 수 있는 시스템이다. 제안한 기법들은 기존의 다른 기법들과의 비교 실험을 수행하여 실제 성능이 우수함을 증명하였다. 성능 평가는 긍정/부정 의견정보를 추출하는 기능의 성능 평가를 실시하였다. 그 적용 사례로 대표적인 영화 리뷰 문장 실험 데이터를 대상으로 실험하고 그 결과를 분석하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.