• 제목/요약/키워드: operator action

검색결과 97건 처리시간 0.027초

비선형 PID 제어기의 최적 설계및 실제 적용 (Optimal design and real application of nonlinear PID controllers)

  • 이문용;구도균;이종민
    • 제어로봇시스템학회논문지
    • /
    • 제3권6호
    • /
    • pp.639-643
    • /
    • 1997
  • This paper presents how nonlinear PID control algorithms can be applied on chemical processes for a more stable operation and perfect automation. A pass balance controller is designed to balance the exiting temperatures of a heater and a heat exchange network. The proposed controller has gain-varying integral action and deals with the operational constraints in an efficient manner. Also, the use of a PID gap controller is proposed to maximize energy saving and operation stability and to minimize operator intervention in operation of air fan coolers. The proposed controller adjusts the opening of a louver automatically in such a way that it keeps the air fan pitch position within the desired range. All these nonlinear PID controllers have been implemented on the distributed control system (DCS) for good reliability and operability. Operator acceptance was very high and the implemented controllers have shown good performance and high service factor still now on. The proposed methodology can be directly applied to similar processes without any modification.

  • PDF

KSTAR 저온 및 구조 계측 시스템 운전 결과 (Operation result of the Cryogenic and Mechanical Measurement System for KSTAR)

  • 김영옥;추용;요네가와;방은남;이태구;백설희;홍재식;이상일;박갑래;오영국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권3호
    • /
    • pp.26-30
    • /
    • 2009
  • Korea Superconducting Tokamak Advanced Research(KSTAR) device is composed of 30 superconducting magnets, magnet structure, vacuum vessel, cryostat, current feeder system, and etc. KSTAR device is operated in the cryogenic temperature and high magnetic field. We install about 800 sensors - temperature sensors, stain gages, displacement gages, hall sensors - to monitor the thermal, mechanical, electrical status of KSTAR during operation. As a tremendous numbers of sensors should be installed for monitoring the KSTAR device, the method of effective installation was developed. The sensor test was successfully carried out to check its reliability and its reproduction in the cryogenic temperature. The sensor signal is processed by PXI-based DAQ system and communicated with central control system via machine network and is shown by Operator Interface(OPI) display in the main control room. In order to safely operate the device, any violations of mechanical & superconductive characteristic of the device components were informed to its operation system & operator. If the monitored values exceed the pre-set values, the protective action should be taken against the possible damage. In this paper, the system composition, operation criteria, operation result were presented.

중대사고 시 보조건물 내 작업자 피폭선량 평가 방법론 개발 (Development of a Methodology for Evaluating Radiation Dose to Workers in Auxiliary Building under Severe Accidents)

  • 김준혁;김병조;배진형
    • 방사선산업학회지
    • /
    • 제18권3호
    • /
    • pp.217-221
    • /
    • 2024
  • This study aims to evaluate the radiation dose received by workers within the auxiliary building of the Saeul Units 1 and 2 during a severe accident. To achieve this, representative accident scenarios were selected, and operator actions required by the severe accident management guidelines were derived to present a methodology for dose assessment. The study utilized MAAP5.06 to analyze severe accidents and employed MAAP DOSE to evaluate worker radiation exposure. Among the three operator actions considered, the direct spray action on the reactor building outer wall-side penetration resulted in the highest estimated radiation dose. This is likely because the workers are deployed near the reactor building penetration, exposing them to higher radiation levels. Future plans include the optimization of dose performance by comparing these findings with evaluations conducted using MCNP, and the development of a data-driven ALARA decision support system for predicting and diagnosing radiation exposure on nuclear sites to ensure worker safety during severe accidents.

A Study On the Design Of Fuzzy Controller for the Steam Temperature Process in the Coal Fired Power Plant

  • Shin, Sang-Doo;Kim, Yi-Gon;Lee, Bong-Kuk
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.350-353
    • /
    • 2003
  • In this paper, we proposed the method to design fuzzy controller using the experience of the operating expert and experimental numeric data for the robust control about the noise and disturbance instead of the traditional PID controller for the main steam temperature control of the thermal power plant. The temperature of main steam temperature process has to be controlled uniformly for the stable electric power output. The process has the problem of the hunting for the cases of various disturbances. In that case, the manual action of the operator happened to be introduced in some cases. We adopted the TSK (Takagi-Sugeno-Kang) model as the fuzzy controller and designed the fuzzy rules using the informations extracted directly from the real plant and various operating condition to solve the above problems and to apply practically. We implemented the real fuzzy controller as the Function Block module in the DCS(Distributed Control System) and evaluated the feasibility through the experiment81 results of the simulation.

  • PDF

ATWS Performance of KALIMER Uranium Metal Core

  • Dohee Hahn;Kim, Young C.
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(2)
    • /
    • pp.592-597
    • /
    • 1996
  • The KALIMER core, of which nuclear design is largely governed by inherent safety and reactivity control issues, is fueled with metallic fuel, and the initial core will be loaded with 20% enriched Uranium metal fuel. KALIMER safety design objectives include the accommodation of unprotected, ATWS events without operator action, and without the support of active shutdown, shutdown heat removal, or any automatic system without damage to the plant and without jeopardizing public safety. The transient analysis of the core designs has been focused on severe events to assess the margins in the design, and ATWS events are the most severe events that must be accommodated by the KALIMER design. The ATWS performance has been evaluated for the preliminary initial core design of KALIMER with a particular emphasis on the inherent negative reactivity feedback effects, including the Doppler, sodium density, fuel axial expansion, core radial expansion, and control rod driveline expansion. Results show that the Uranium metal core design meets the temperature limits with margin.

  • PDF

Design of Improved Detection Instrumentation for the Annulus Gas System for Wolsong 2

  • Kim, Seog-Nam;Koo, Jun-Mo;Chang, Ik-Ho;Jung, Ho-Chang;Han, Sang-Joon
    • Nuclear Engineering and Technology
    • /
    • 제28권4호
    • /
    • pp.423-430
    • /
    • 1996
  • The improved and advanced Annulus Gas System(AGS) has been developed for Wolsong 2 to satisfy the requirements of the regulatory body. The Atomic Energy Control Board(AECB) required a shorter detection time following a small leak from a pressure tube and/or calandria tube. This paper describes licensing requirements, functional requirements and detail design description for the AGS. The Wolsong unit No. 1 AGS was designed to operate as a stagnant system normally requiring only pressure regulation and having provisions for purging. no improved AGS involves the adoption of gas recirculation in AGS, duplication of dew point indicators with additional instrumentation and sampling provisions to prompt operator action. The improved system operates in the recirculation mode with continuous dew point measurement for leak detection. An AGS with improved detection instrumentation is provided.

  • PDF

A Study on Feasibility Evaluation for Prognosis Systems based on an Empirical Model in Nuclear Power Plants

  • Lee, Soo Ill
    • International Journal of Safety
    • /
    • 제11권1호
    • /
    • pp.26-32
    • /
    • 2012
  • This paper introduces a feasibility evaluation method for prognosis systems based on an empirical model in nuclear power plants. By exploiting the dynamical signature characterized by abnormal phenomena, the prognosis technique can be applied to detect the plant abnormal states prior to an unexpected plant trip. Early $operator^{\circ}{\emptyset}s$ awareness can extend available time for operation action; therefore, unexpected plant trip and time-consuming maintenance can be reduced. For the practical application in nuclear power plant, it is important not only to enhance the advantages of prognosis systems, but also to quantify the negative impact in prognosis, e.g., uncertainty. In order to apply these prognosis systems to real nuclear power plants, it is necessary to conduct a feasibility evaluation; the evaluation consists of 4 steps (: the development of an evaluation method, the development of selection criteria for the abnormal state, acquisition and signal processing, and an evaluation experiment). In this paper, we introduce the feasibility evaluation method and propose further study points for applying prognosis systems from KHNP's experiences in testing some prognosis technologies available in the market.

악안면기형의 술후변화 및 평가 (Evaluation on the Late Results of Operation on the Patients of Maxillofacial Deformities)

  • 김종원
    • 대한치과의사협회지
    • /
    • 제22권12호통권187호
    • /
    • pp.1043-1046
    • /
    • 1984
  • The clinical and statistical evaluation on the patients of maxillofacial deformities who were operated by author were analyzed after several month or years or se. Pre and post operative cephalometric radiographs of 45 orthognathic surgery patients were compared. The post operative radiographs had been taken at least 9 month to several years. Measurements were made between constructed hard tissue and soft tissue points located on each before and after film tracing. The items studied and evaluated are as follows: 1) Classification and divid of patients 2) Operation technic adopted by operator. 3) Motives of patients for operation and their untowards. 4) Self satisfication of patients after operation. 5) Post operative changes of soft and hard tissue. 6) Side action during and after operation.

  • PDF

Application of experience-based expertise acquisition mechanism to hovering stabilization of helicopter

  • Sakai, Y.;Kitazawa, M.;Aoyama, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.384-387
    • /
    • 1995
  • A helicopter is used in a variety of situations because of its usability. Its operation, needs human skill. The authors are working on automatization of human skill. Helicopter operation is one of such fields of practicing human skill. This is why the present paper deals with helicopter (model helicopter) operation. Full operation of a helicopter needs more complicated system in both aspects of software and hardware, and also requires more training for operation. From the purpose here that helicopter operation is for checking the applicability of the authors' idea for automatization based on experience, attitude regulation in hovering is the target. In the present paper, a human operator's operation is recorded as a time series of operation actions, and the record is reorganized as the correspondence between the helicopter's attitude and the proper operation action required in that particular situation.

  • PDF

Design and the characteristic analysis of experimental system for automatic control education

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.350-350
    • /
    • 2000
  • Since the heat exchange system, such as the boiler of power plant, gas turbine, and radiator require a high rate heat efficiency and the efficiency of these systems is depended on the control methods. However, it is important f3r operator to understand control system of these systems. In order to properly apply control equipment to these process control systems, such as boiler, any other heat process, or process control system it is necessary to understand the basic aspects and operation principle of the process that relate control, interrelationships of the process characteristics, and the dynamics that are involved. Generally, PID controllers are used in these systems but it is difficult for engineer to understand the complex dynamics and the tuning method because of the coupling action and disturbance in the system loop. In this paper, we design an effective experimental system fur automatic control education and analyze its characteristics through experimental system and industrial plant control software to study how they can team automatic control system by experiments.

  • PDF