• 제목/요약/키워드: operational stiffness

검색결과 70건 처리시간 0.021초

여유자유도를 가진 로보트의 pre-multiplier모델에 관한 연구 (A study on the pre-multiplier model for redundant manipulator)

  • 정완균;김진오
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.127-130
    • /
    • 1989
  • The redundant manipulator extends the application fields of classical nonredundant manipulators. In this paper, we propose Premultiplier Model that describes the static behavior of redundant manipulator. This model provides insight and intuition about algebra and physics related to redundant manipulators. Active operational space stiffness control of redundant manipulators is proved to be always unstable and we propose a technique, based on our methodology, to make stiffness control stable.

  • PDF

Synthesis of a planar 3 degree-of-freedom adjustible compliance mechanism

  • Kim, Whee-Kuk;Yi, Byung-Ju;Kim, Dong-Gu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.334-339
    • /
    • 1994
  • In this work, we propose a planar three degree-of-freedom parallel mechanism as another type of assembly device which utilized joint compliances. These joint compliances can be adjusted either by properly replacing the joint compliances or by actively controlling stiffness at joints, in order to generate the desired operational compliance characteristics at RCC point, The operational compliance matrix for this mechanism is explicitly obtained by symbolic manipulation and its operational compliance characteristics are examined, it is found that the RCC point exists at the center of the workspace when the mechanism maintains symmetric configurations. Compliance characteristic and its sensitivity of this mechanism is analyzed with respect to the magnitude of the diagonal compliance components and two different matrix norms measuring compliance sensitivity. It is expected that the analysis results provide the designer with a helpful information to determine a set of optimal parameters of this RCC mechanism.

  • PDF

A Study on the Measurement and Analysis of Whirling Vibration Behavior of Marine Propulsion Shafting System using Gap-sensors

  • Sun, Jin-Suk;Han, Tae-Min;Lee, Kang-Ki;Kim, Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권2호
    • /
    • pp.130-135
    • /
    • 2015
  • Recently, as a result of the application of large and multi-blade propellers with high efficiency for large vessels, the vertical bending stiffness of propulsion shafting system tends to be declined. For some specific vessels, the shaft arrangement leads to the forward stern tube bearing to be omitted, decreasing vertical bending stiffness. In this respect, decreased vertical bending stiffness causes the problem which is the blade order resonance frequency to be placed within the operational rpm range of propulsion shafting system. To verify whirling vibration, the measurement should be carried out covering from operating rpm up to target rpm, however, the range is un-measurable generally. In order to resolve the measurement issue, this study shows the measuring method and the assessment method of relevant natural frequency of whiling vibration by using measured harmonic order component of whirling vibration.

횡 진동 측정에 관한 연구 (A study on the whirling vibration measurement)

  • 선진석;오주원;김용철;김의간
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2012년도 전기공동학술대회 논문집
    • /
    • pp.184-184
    • /
    • 2012
  • Recently, as a result of the application of large and multi-blade propellers with high efficiency for large vessels, the vertical bending stiffness of propulsion shafting system tends to be declined. For some specific vessels, the shaft arrangement leads to the forward stern tube bearing to be omitted, decreasing vertical bending stiffness. In this respect, decreased vertical bending stiffness causes the problem which is the blade order resonance frequency to be placed within the operational range of propulsion shafting system. To verify whirling vibration, the measurement should be carried out covering the range of MCR, however, the range is un-measurable. To resolve the measurement issue, this study shows the measuring method and the estimating method of whiling vibration by using resonance frequency of sub harmonic.

  • PDF

타워강성 효과를 고려한 소형 수직축 풍력발전기 운전 진동실험 및 해석 (Operational Vibration Experiment and Analysis of a Small Vertical-Axis Wind Turbine Considering the Effect of a Tower Stiffness)

  • 추헌호;심재박;오민우;김동현
    • 한국유체기계학회 논문집
    • /
    • 제16권3호
    • /
    • pp.5-9
    • /
    • 2013
  • In this study, operational vibration experiment and analysis have been conducted for the 4-blade small vertical-axis wind turbine (VAWT) including the effect of tower elastic behavior. Computational structural dynamics analysis method is applied to obtain Campbell diagram for the VAWT with elastic tower. An open type wind-tunnel is used to change and keep the wind velocity during the ground test. Equivalent elastic tower is used to support the VAWT so that the effect of elastic stiffness of the tower can be considered in the present vibration experiment. Various excitation conditions with wind loads are considered and the dominant operating vibration phenomena are physically investigated in detail.

Numerical evaluation of surface settlement induced by ground loss from the face and annular gap of EPB shield tunneling

  • An, Jun-Beom;Kang, Seok-Jun;Kim, Jin;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • 제29권3호
    • /
    • pp.291-300
    • /
    • 2022
  • Tunnel boring machines combined with the earth pressure balanced shield method (EPB shield TBMs) have been adopted in urban areas as they allow excavation of tunnels with limited ground deformation through continuous and repetitive excavation and support. Nevertheless, the expansion of TBM construction requires much more minor and exquisitely controlled surface settlement to prevent economic loss. Several parametric studies controlling the tunnel's geometry, ground properties, and TBM operational factors assuming ordinary conditions for EPB shield TBM excavation have been conducted, but the impact of excessive excavation on the induced settlement has not been adequately studied. This study conducted a numerical evaluation of surface settlement induced by the ground loss from face imbalance, excessive excavation, and tail void grouting. The numerical model was constructed using FLAC3D and validated by comparing its result with the field data from literature. Then, parametric studies were conducted by controlling the ground stiffness, face pressure, tail void grouting pressure, and additional volume of muck discharge. As a result, the contribution of these operational factors to the surface settlement appeared differently depending on the ground stiffness. Except for the ground stiffness as the dominant factor, the order of variation of surface settlement was investigated, and the volume of additional muck discharge was found to be the largest, followed by the face pressure and tail void grouting pressure. The results from this study are expected to contribute to the development of settlement prediction models and understanding the surface settlement behavior induced by TBM excavation.

회전체 진동감소를 위한 마그네틱 댐퍼 설계 및 응용

  • 이봉기;김영배
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.769-772
    • /
    • 1995
  • Most turbo machines, which operate at high speeds, such as gas turbines, jet engines, pumps, and compressors are prone to perrturbing vibrations. The best vibration control method for rotors is to eliminate destabilizing factors. Careful balancing application of "more stable" oil-lubricated bearing, such as tilting pad bearings or use of anti-swirl devices in seals, are examplse of passive vibration control methods. the use of magnetic bearing is an active control method. An obvious advantage of active control is that it provides damping (or modifies system stiffness or other parameters) only when there is a need for that, i.e., in emergency states, while not affecting the rotor normal operational conditions. Moreover, active control methods provide exact position control through on-line control. In this study, a magnetic actuator, digital contrliier using DSP, and bipolar operational power supply/amplifiers were developed to show the effectiveness of reducing robot vibration. Also the curve fitting procedure to obtain the transfer function of frequency dependent component was developed. Results presented in this dissertation will provide a well-defined technical parameters in designing magnetic damper system.er system.

  • PDF

Impedance characteristic of human arm for cooperative robot

  • Rahman, Mozasser;Ikeura, Ryojun;Mizutani, Kazuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.85.3-85
    • /
    • 2002
  • In this study, we tried to investigate the impedance characteristic of human arm in a cooperative task. Human arm was moved in a desired trajectory. The motion was actuated by a 1 degree-of-freedom robot system. As the muscle is mechanically analogous to a spring-damper system, a second-order equation was considered as the model for arm dynamics. In the model, inertia, stiffness and damping factor were considered. The impedance parameter was estimated from the position and torque data obtained from the experiment and based on the "Estimation of Parametric Model". It was found that the inertia is almost constant over the operational time. The damping factor and stiffness were high...

  • PDF

A Compliance Control Strategy for Robot Manipulators Under Unknown Environment

  • Kim, Byoung-Ho;Oh, Sang-Rok;Suh, Il-Hong;Yi, Byung-Ju
    • Journal of Mechanical Science and Technology
    • /
    • 제14권10호
    • /
    • pp.1081-1088
    • /
    • 2000
  • In this paper, a compliance control strategy for robot manipulators that employs a self-adjusting stiffiness function is proposed. Based on the contact force, each entry of the diagonal stiffness matrix corresponding to a task coordinate in the operational space is adaptively adjusted during contact along the corresponding axis. The proposed method can be used for both the unconstrained and constrained motions without any switching mechanism which often causes undesirable instability and/or vibrational motion of the end-effector. The experimental results involving a two-link direct drive manipulator interacting with an unknown environment demonstrates the effectiveness of the proposed method.

  • PDF

팩인홀 작업을 효율적으로 수행하기 위한 컴플라이언스 해석 (Compliance Analysis for Effective Peg-In-Hole Task)

  • 김병호;이병주;서일홍;오상록
    • 한국정밀공학회지
    • /
    • 제17권9호
    • /
    • pp.181-188
    • /
    • 2000
  • This paper deals with an analysis of the compliance characteristic for effective peg-in-hole task using robot hand without inter-finger coupling. We first observe the fact that some of coupling stiffness elements cannot be planned arbitrary. next we classify the task of inserting a peg-in-a-hole into two contact styles between the peg and the hole. Then we analyze the conditions of the specified stiffness matrix in the operational space to successfully and more effectively achieve the give peg-in-hole task for each case. It is concluded that the location of compliance center on the peg and the coupling stiffness element existing between the translational and the rotational direction play important roles for successful peg-in-hole task. Simulation results are included to verify the feasibility of the analytic results.

  • PDF