• Title/Summary/Keyword: operational ground

Search Result 296, Processing Time 0.031 seconds

Full-scale TBM excavation tests for rock-like materials with different uniaxial compressive strength

  • Gi-Jun Lee;Hee-Hwan Ryu;Gye-Chun Cho;Tae-Hyuk Kwon
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.487-497
    • /
    • 2023
  • Penetration rate (PR) and penetration depth (Pe) are crucial parameters for estimating the cost and time required in tunnel construction using tunnel boring machines (TBMs). This study focuses on investigating the impact of rock strength on PR and Pe through full-scale experiments. By conducting controlled tests on rock-like specimens, the study aims to understand the contributions of various ground parameters and machine-operating conditions to TBM excavation performance. An earth pressure balanced (EPB) TBM with a sectional diameter of 3.54 m was utilized in the experiments. The TBM excavated rocklike specimens with varying uniaxial compressive strength (UCS), while the thrust and cutterhead rotational speed were controlled. The results highlight the significance of the interplay between thrust, cutterhead speed, and rock strength (UCS) in determining Pe. In high UCS conditions exceeding 70 MPa, thrust plays a vital role in enhancing Pe as hard rock requires a greater thrust force for excavation. Conversely, in medium-to-low UCS conditions less than 50 MPa, thrust has a weak relationship with Pe, and Pe becomes directly proportional to the cutterhead rotational speed. Furthermore, a strong correlation was observed between Pe and cutterhead torque with a determination coefficient of 0.84. Based on these findings, a predictive model for Pe is proposed, incorporating thrust, TBM diameter, number of disc cutters, and UCS. This model offers a practical tool for estimating Pe in different excavation scenarios. The study presents unprecedented full-scale TBM excavation results, with well-controlled experiments, shedding light on the interplay between rock strength, TBM operational variables, and excavation performance. These insights are valuable for optimizing TBM excavation in grounds with varying strengths and operational conditions.

Operational Validation of the COMS Satellite Ground Control System during the First Three Months of In-Orbit Test Operations (발사 후 3개월간의 궤도 내 시험을 통한 통신해양기상위성 관제시스템의 운용검증)

  • Lee, Byoung-Sun;Kim, In-Jun;Lee, Soo-Jeon;Hwang, Yoo-La;Jung, Won-Chan;Kim, Jae-Hoon;Kim, Hae-Yeon;Lee, Hoon-Hee;Lee, Sang-Cherl;Cho, Young-Min;Kim, Bang-Yeop
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • COMS(Chollian) satellite which was launched on June 26, 2010 has three payloads for Ka-band communications, geostationary ocean color imaging and meteorological imaging. In order to make efficient use of the geostationary satellite, a concept of mission operations has been considered from the beginning of the satellite ground control system development. COMS satellite mission operations are classified by daily, weekly, monthly, and seasonal operations. Daily satellite operations include mission planning, command planning and transmission, telemetry processing and analysis, ranging and orbit determination, ephemeris and event prediction, and wheel off-loading set point parameter calculation. As a weekly operation, North-South station keeping maneuver and East-West station keeping maneuver should be performed on Tuesday and Thursday, respectively. Spacecraft oscillator updating parameter should be calculated and uploaded once a month. Eclipse operations should be performed during a vernal equinox and autumnal equinox season. In this paper, operational validations of the major functions in COMS SGCS are presented for the first three month of in-orbit test operations. All of the major functions have been successfully verified and the COMS SGCS will be used for the mission operations of the COMS satellite for 7 years of mission life time and even more.

Radarsat-1 ScanSAR Quick-look Signal Processing and Demonstration Using SPECAN Algorithm (SPECAN 알고리즘을 이용한 Radatsat-1 ScanSAR Quick-look 신호 처리 및 검증 알고리즘 구현)

  • Song, Jung-Hwan;Lee, Woo-Kyung;Kim, Dong-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.75-86
    • /
    • 2010
  • As the performance of the spaceborne SAR has been dramatically enhanced and demonstrated through advanced missions such as TerraSAR and LRO(Lunar Reconnaissance Orbiter), the need for highly sophisticated and efficient SAR processor is also highlighted. In Korea, the activity of SAR researches has been mainly concerned with SAR image applications and the current SAR raw data studies are mostly limited to stripmap mode cases. The first Korean spaceborne SAR is scheduled to be operational from 2010 and expected to deliver vast amount of SAR raw data acquired from multiple operational scenarios including ScanSAR mode. Hence there will be an increasing demand to implement ground processing systems that enable to analyze the acquired ScanSAR data and generate corresponding images. In this paper, we have developed an efficient ScanSAR processor that can be directly applied to spaceborne ScanSAR mode data. The SPECAN(Spectrum Analysis) algorithm is employed for this purpose and its performance is verified through RADARSAT-1 ScanSAR raw data taken over Korean peninsular. An efficient quick-look processing is carried out to produce a wide-swath SAR image and compared with the conventional RDA processing case.

A Study on Advance Rate under the Operating Conditions of EPB Shield TBM Based on TBM Operation Data (현장 굴진자료 분석에 의한 토압식 쉴드 TBM의 운전조건과 굴진속도 연구)

  • An, Man Sun;Lim, Kwang-Su;Kim, Kyong Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6D
    • /
    • pp.839-848
    • /
    • 2011
  • TBM (Tunnel Boring Machine) tunnel should be carry out with the adopted machine until the end of excavation because of impossibility of replacement or modification of machine. Observation of the face of the tunnel is difficult, especially in EPB(Earth Pressure Balance) shield TBM, predict changes in the ground condition with analyzing data, collected during the excavation, and it should be reflected in construction. Until recently, subjects of studies on TBM are mainly the determination of machine and the development of advance rate prediction model, according to the characteristics of ground which is the target of excavation. However, study focused on the estimation of ground conditions and the improvement in operational methods using excavation data of TBM equipment, the principal of the excavation, has been done not so much. This study examine the variances in advance rate depending on changes in operating conditions and evaluate the optimal operating conditions of adopt machine, using working data obtained from EPB shield TBM project. The result of this study is suggested as follows. First, cutter head RPM and total thrust force are biggest influences on advance rate, Second, it is recommended for proper advance rate that total thrust force is controlled while optimum cutter head RPM is kept, Third, according to the increasing trend of total thrust force, the changes in ground conditions can be predicted, the appropriate operating conditions can be determined.

A Study on the Analysis of Visibility between a Lunar Orbiter and Ground Stations for Trans-Lunar Trajectory and Mission Orbit (지구-달 전이궤적 및 임무 궤도에서 궤도선과 지상국의 가시성 분석에 관한 연구)

  • Choi, Su-Jin;Kim, In-Kyu;Moon, Sang-Man;Kim, Changkyoon;Rew, Dong-young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.3
    • /
    • pp.218-227
    • /
    • 2016
  • Korean government plans to launch a lunar orbiter and a lander to the Moon by 2020. Before launch these two proves, an experimental lunar orbiter will be launched by 2018 to obtain key space technologies for the lunar exploration. Several payloads equipped in experimental lunar orbiter will monitor the surface of the Moon and will gather science data. Lunar orbiter sends telemetry and receives tele-command from ground using S-band while science data is sent to ground stations using X-band when the visibility is available. Korean deep space network will be mainly used for S and X-band communication with lunar orbiter. Deep Space Network or Universal Space Network can also be used for the S-band during trans-lunar phase when korean deep space network is not available and will be used for the S-band in normal mission orbit as a backup. This paper analyzes a visibility condition based on the combination of various ground antennas and its mask angles according to mission scenario to predict the number of contacts per day and to build an operational scenario for the lunar orbiter.

Analysis on Orbital Dynamics Operation Results of KOMPSAT-3 during Early Phase after Launch (다목적실용위성 3호 발사 후 초기 궤도 운영결과 분석)

  • Jung, Ok-Chul;Yim, Hyeonjeong;Chung, Dae-Won;Kim, Eun-Kyou;Kim, Hak-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.4
    • /
    • pp.319-326
    • /
    • 2013
  • This paper describes the orbital dynamics operation results for the launch and early operations phase (LEOP) of KOMPSAT-3, which was successfully launched on May 18, 2012. At the initial phase, operational orbit determination was carried out using ground tracking data and GPS navigation solution. And, both in-plane and out-of plane maneuvers were executed in order to change the orbit from the injection orbit to the mission orbit. In addition, the accuracy of precise orbit determination was indirectly evaluated by overlapping method using GPS raw data of KOMPSAT-3 and international GNSS service data from worldwide-distributed ground stations. Currently, KOMPSAT-3 is operated in pre-defined mission orbit, and its various kinds of orbit data are generated and distributed to support the normal mission operations.

A study on appearance frequencies and fishing ground exploration of low-run fishing obtained by analyzing AIS data of vessels in the sea around Jeju Island (AIS data 분석에 의한 제주도 주변 해역에서의 저속 어선의 출현빈도와 어장탐색)

  • KIM, Kwang-Il;AHN, Jang-Young
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.54 no.2
    • /
    • pp.157-163
    • /
    • 2018
  • In the area around Jeju Island, the squid jigging fishery and the hair-tail angling are popular. Therefore, the study on the characteristics of the formation and shift of fishing grounds is very important. We have received and analyzed AIS data of all vessels around Jeju Island from October 16, 2016 to October 16, 2017, and extracted the positions of the fishing vessels with the same operational characteristics as the fishing vessels of their fisheries. The distribution chart of the frequency of fishing vessels appearing in each predefined fishing grid ($1NM{\times}1NM$) was analyzed. So we took a analogy with the monthly shift of fishing grounds. Many fishing vessels appeared in the seas around Jeju Island from November 2016 to January 2017, and the frequency of their appearance was maintained. In November, however, fishing vessels were mostly concentrated in coastal waters. Yet, the density gradually weakened as they moved into January. From February, the frequency itself began to decline, making it the worst in April. The high concentration of fishing vessels in the waters leading from Jeju Island's northwest coast to south coast in November is believed to be related to the yellowtail fishery that are formed annually in the coastal waters off the island of Marado. In May 2017, the appearance frequency of fishing vessels increased and began to show a concentration in coastal waters around Jeju Island. Fishing vessels began to flock in waters northwest of Jeju Island beginning in July and peaked in August, and by September, fishing vessels were moving south along the coast of Jeju Island, weakening the density and spreading out. Between July and August, fishing vessels were concentrated in waters surrounding Jeju Island, which is believed to be related to the operations of fishing vessels for the squid jigging fishery and the hair-tail angling.

Vibration Health Monitoring of Helicopter Transmission Systems at Westland Helicopter Ltd.

  • Kang, Chung-Shin;Choi, Sun-Woo;Ahn, Seok-Min;Horsey, M.W;Stuckey, M.J
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.48-61
    • /
    • 2000
  • Korea Aerospace Research Institute (KARI) have gained experience with Helicopter Vibration Health Monitoring (VHM) System technology with the help of UK GKN-WHL. GKN-WHL have had many years of experience with the research and development of vibration analysis techniques to improve the health monitoring of helicopter transmissions. This activity was targeted at transmission rig testing at first, but the techniques have been progressively developed where they are now used as a part of integrated Health and Usage Monitoring (HUM) systems on many types of in-service and new helicopters. The technique development process has been considerably aided by an ever expanding database of transmission monitoring experience from both the rig testing and aircraft operations. This experience covers a wide range of failure types from naturally occurring faults to crack propagation studies and covering a wide range of transmission configurations. Primarily based on accelerometer signals GKN-WHL's vibration analysis methods have also been applied to a variety of other sensor types. The transition from an experimental environment to operational VHM systems has been a lengthy process, there being a need to demonstrate technique reliability as well as effectiveness to both regulatory (Airworthiness Authority) and commercial organizations. Another important feature of this process has been the development of close relationships with a number of VHM system hardware and software suppliers. Such an experienced GKN-WHL provides various raw vibration data which was acquired from transmission ground test rig and allow KARI to develop it's own analysis program. KARI made a program and then analyzed the data to coma pre with the results of GKN-WHL. The KARI's results both time domain signals and statistical values show comparable to GKN's.

  • PDF

Design and Implementation of Mobile Network Based Long-Range UAV Operational System for Multiple Clients (모바일 네트워크를 이용한 복수의 클라이언트용 무인항공기 원거리 운용 시스템 설계 및 구현)

  • Park, Seong-hyeon;Song, Joon-beom;Roh, Min-shik;Song, Woo-jin;Kang, Beom-soo
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.3
    • /
    • pp.217-223
    • /
    • 2015
  • This paper describes the design and implementation of a network system for UAV for multiple clients that enables long-range operation based on a commercial mobile network. A prototype data modem is developed with a commercial embedded M2M module in order to provide an access to the mobile network. A central server with a database is constructed to record all of real-time flight and video data and communicate with a ground control system. A GCS is developed for the central control, the single UAV and the smart phone version to be used for different purposes. Performance tests were progressed for data delay, video frame rate and state of clients. Flight tests were also performed to verify the reliability of the modem with respect to altitude.

Aerosol Optical Thickness Retrieval Using a Small Satellite

  • Wong, Man Sing;Lee, Kwon-Ho;Nichol, Janet;Kim, Young J.
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.605-615
    • /
    • 2010
  • This study demonstrates the feasibility of small satellite, namely PROBA platform with the compact high resolution imaging spectrometer (CHRIS), for aerosol retrieval in Hong Kong. The rationale of our technique is to estimate the aerosol reflectances by decomposing the Top of Atmosphere (TOA) reflectances from surface reflectance and Rayleigh path reflectances. For the determination of surface reflectances, the modified Minimum Reflectance Technique (MRT) is used on three winter ortho-rectified CHRIS images: Dec-18-2005, Feb-07-2006, Nov-09-2006. For validation purpose, MRT image was compared with ground based multispectral radiometer measurements and atmospherically corrected Landsat image. Results show good agreements between CHRIS-derived surface reflectance and both by ground measurement data as well as by Landsat image (r>0.84). The Root-Mean-Square Errors (RMSE) at 485, 551 and 660nm are 0.99%, 1.19%, and 1.53%, respectively. For aerosol retrieval, Look Up Tables (LUT) which are aerosol reflectances as a function of various AOT values were calculated by SBDART code with AERONET inversion products. The CHRIS derived Aerosol Optical Thickness (AOT) images were then validated with AERONET sunphotometer measurements and the differences are 0.05~0.11 (error=10~18%) at 440nm wavelength. The errors are relatively small compared to those from the operational moderate resolution imaging spectroradiometer (MODIS) Deep Blue algorithm (within 30%) and MODIS ocean algorithm (within 20%).