• 제목/요약/키워드: operation parameters

검색결과 2,491건 처리시간 0.032초

정상운영기간동안의 KOMPSAT-3A호 주요 영상 품질 인자별 특성 (Characteristics of KOMPSAT-3A Key Image Quality Parameters During Normal Operation Phase)

  • 서두천;김현호;정재헌;이동한
    • 대한원격탐사학회지
    • /
    • 제36권6_2호
    • /
    • pp.1493-1507
    • /
    • 2020
  • KOMPSAT-3A는 2015년 3월 발사하여 약 6개월의 기간 동안 초기 검보정을 수행한 이후 지난 8년 동안 성공적으로 KOMPSAT-3A 자료를 사용자들에게 배포하였으며, 수집된 영상 자료는 지도제작, GIS, 국토관리 등의 다양한 분야에서 정성적, 정량적 정보 추출의 기초 자료로 활용되고 있다. 한국항공우주연구원에서는 KOMPSAT-3A의 영상제품군에서 추출되는 정보의 정확도 및 신뢰도를 확보하기 위해 주기적으로 영상 품질과 인공위성 하드웨어 특성을 확인하고 있다. 또한 KOMPSAT-3A의 탑재체, 자세제어 센서들의 노후화에 따른 영상 품질 저하 현상을 최소화하기 위해 지속적인 영상 품질 개선 작업을 수행하고 있다. 본 논문에서는 KOMPSAT-3A 개발 단계에서 정의된 발사 전후의 검보정 주요 과정 및 대표 영상 품질 인자인 MTF, SNR, Location accuracy 측정 방법을 설명하였다. 이를 바탕으로 발사 후 초기 LEOP Cal/Val이 완료된 이후 측정된 영상 품질 인자별 성능값과 최근 2016년부터 2020년 5월까지 KOMPSAT-3A호의 주요 품질 인자인 MTF, SNR, Location accuracy 현황과 특성을 기술하였다.

FFT 적용을 통한 Convolution 연산속도 향상에 관한 연구 (A Study on the Optimization of Convolution Operation Speed through FFT Algorithm)

  • 임수창;김종찬
    • 한국멀티미디어학회논문지
    • /
    • 제24권11호
    • /
    • pp.1552-1559
    • /
    • 2021
  • Convolution neural networks (CNNs) show notable performance in image processing and are used as representative core models. CNNs extract and learn features from large amounts of train dataset. In general, it has a structure in which a convolution layer and a fully connected layer are stacked. The core of CNN is the convolution layer. The size of the kernel used for feature extraction and the number that affect the depth of the feature map determine the amount of weight parameters of the CNN that can be learned. These parameters are the main causes of increasing the computational complexity and memory usage of the entire neural network. The most computationally expensive components in CNNs are fully connected and spatial convolution computations. In this paper, we propose a Fourier Convolution Neural Network that performs the operation of the convolution layer in the Fourier domain. We work on modifying and improving the amount of computation by applying the fast fourier transform method. Using the MNIST dataset, the performance was similar to that of the general CNN in terms of accuracy. In terms of operation speed, 7.2% faster operation speed was achieved. An average of 19% faster speed was achieved in experiments using 1024x1024 images and various sizes of kernels.

Effects of Material Parameters and Process Conditions on the Roll-Drafting Dynamics

  • Huh, You;Kim, Jong-S.
    • Fibers and Polymers
    • /
    • 제7권4호
    • /
    • pp.424-431
    • /
    • 2006
  • Roll drafting, a mechanical operation attenuating fiber bundles to an appropriate thickness, is an important operation unit for manufacturing staple yams. It influences not only the linear density regularity of the slivers or staple yams that are produced, but also the quality of the textile product and the efficiency of the thereafter processes. In this research, the dynamic states of the fiber bundle in the roll drafting zone were analyzed by simulation, based on the mathematical model that describes the dynamic behavior of the flowing bundle. The state variables are the linear density and velocity of the fiber bundles and we simulated the dynamics states of the bundle flow, e.g., the profiles of the linear density and velocity in the draft zone for various values of the model parameters and boundary conditions, including the initial conditions to obtain their influence on the dynamic state. Results showed that the mean velocity profile of the fiber bundle was strongly influenced by draft ratio and process speed, while the input sliver linear density has hardly affected the process dynamics. Velocity variance of individual fibers that could be supposed to be a disturbing factor in drafting was also influenced by the process speed. But the major disturbance occurred due to the velocity slope discontinuity at the front roll, which was strongly influenced by the process speed. Thickness of input sliver didn't play any important role in the process dynamics.

화학레이저 구동용 이젝터 시스템 개발 (II) - 이차목 형태의 환형 초음속 이젝터 최적 설계 - (Development of an Ejector System for Operation of Chemical Lasers (II) - Optimal Design of the Second-Throat Type Annular Supersonic Ejector -)

  • 김세훈;진정근;권세진
    • 대한기계학회논문집B
    • /
    • 제28권10호
    • /
    • pp.1231-1237
    • /
    • 2004
  • Determination of geometric design parameters of a second-throat type annual supersonic ejector is described. Tested geometric parameters were primary nozzle area ratio, cross-sectional area of second-throat, L/D ratio of second-throat and primary flow injection angle. Varying these four geometric parameters, we build a test matrix made of 81 test conditions, and experimental apparatus was fabricated to accommodate them. For each test condition, the stagnation pressure of primary flow and the static pressure of the secondary flow were measured simultaneously along with their transition to steady operation and finally to unstarting condition. Comparing the performance curve of every case focused on starting pressure, the unstarting pressure and the minimum secondary pressure, we could derive correlations that the parameters have on the performance of the ejector and presented the optimal design method of the ejector. Additional experiments were carried out to find effects of temperature and mass flow rate of the secondary flow.

제습로터의 운전특성을 재배하는 무차원 인자의 도출과 해석 (Derivation and Analysis of Dimensionless Parameters Dominating the Dehumidification Characteristics of a Desiccant Rotor)

  • 이길봉;김민수;이대영
    • 설비공학논문집
    • /
    • 제17권7호
    • /
    • pp.611-619
    • /
    • 2005
  • In a previous work of the authors, the heat and mass transfer in a desiccant rotor was analyzed theoretically through linearization assumptions and four dimensionless parameter groups dominating the dehumidification process were arranged. In this work is verified whether the four dimensionless parameters also play the dominant roles in more realistic situations where the nonlinear factors affect the heat and mass transfer. The results show that the dehumidification characteristics are closely similar to each other as long as the four dimensionless parameters have the same set of values while the rotor configurations and/or the operation conditions are different from each other. The four dimensionless parameters are $\Psi,\;\chi,\;\sigma$ and N, where $\Psi$ implies the average gradient of relative humidity lines in the psychrometric chart, $\chi$ the heat capacity of the rotor and $\sigma$ the sorption capacity of the rotor, and N implies the number of transfer unit.

쌍안정 TN LCD의 고속 매트릭스 어드레싱을 위한 패널 파라미터와 구동 파형의 최적화 (Optimization of panel parameters and drive signals for high-speed matrix addressing of a bistable twisted-nematic LCD)

  • 이기동;박구현;장기철;윤태훈;김재창;이응상
    • 한국광학회지
    • /
    • 제9권6호
    • /
    • pp.417-422
    • /
    • 1998
  • 쌍안정 TN LCD를 매트릭스 어드레싱 구동을 할 때 패널 파라미터와 구동 파형을 최적화하는 방법을 제시하였다. 쌍안정 TN 액정 셀에서 데이터 전압이 광 수위칭 특성에 미치는 영향을 측정하였고 이를 이론적으로 모델링 하였다. 스위칭에 데이터 전압이 미치는 영향을 고려하기 위해 시간의 함수로써 weighting 함수를 도입하였다. Weighting 함수를 알아내면 최소의 데이터 펄스폭을 계산함으로써 멀티플렉싱 구동을 위한 최대의 구동 라인 수를 계산할 수 있다. 또한 패널 파라미터(예, d/p)를 변화 시키면서 테스트 셀을 구동하면 고속 동작을 위한 파라미터를 최적화할 수 있다. 이로부터 이론적 예측과 실험 결과가 잘 일치하는 것을 확인하였다.

  • PDF

선삭 작업에서 표면조도와 전류소모의 모델링 및 최적화를 위한 반응표면방법론의 응용 (Application of Response Surface Methodology for Modeling and Optimization of Surface Roughness and Electric Current Consumption in Turning Operation)

  • ;오수철
    • 한국기계가공학회지
    • /
    • 제13권4호
    • /
    • pp.56-68
    • /
    • 2014
  • This paper presents an experiment on the modeling, analysis, prediction and optimization of machining parameters used during the turning process of the low-carbon steel known as ST40. The parameters used to develop the model are the cutting speed, the feed rate, and the depth of the cut. The experiments were carried out under various conditions, with three level of parameters and two different treatments for each level (with and without a lubricant), to determine the effects of the parameters on the surface roughness and electric current consumption. These effects were investigated using response surface methodology (RSM). A second-order model is used to predict the values of the surface roughness and the electric current consumption from the results of experiments which collected preliminary data. The results of the experiment and the predictions of the surface roughness and electric current consumption under both treatments were found to be nearly identical. This result shows that the feed rate is the main factor that influences the surface roughness and electric current consumption.

밀링공정의 적응모델링과 공구마모 검출을 위한 신경회로망의 적용 (Adaptive Milling Process Modeling and Nerual Networks Applied to Tool Wear Monitoring)

  • 고태조;조동우
    • 한국정밀공학회지
    • /
    • 제11권1호
    • /
    • pp.138-149
    • /
    • 1994
  • This paper introduces a new monitoring technique which utilizes an adaptive signal processing for feature generation, coupled with a multilayered merual network for pattern recognition. The cutting force signal in face milling operation was modeled by a low order discrete autoregressive model, shere parameters were estimated recursively at each sampling instant using a parameter adaptation algorithm based on an RLS(recursive least square) method with discounted measurements. The influences of the adaptation algorithm parameters as well as some considerations for modeling on the estimation results are discussed. The sensitivity of the extimated model parameters to the tool state(new and worn tool)is presented, and the application of a multilayered neural network to tool state monitoring using the previously generated features is also demonstrated with a high success rate. The methodology turned out to be quite suitable for in-process tool wear monitoring in the sense that the model parameters are effective as tool state features in milling operation and that the classifier successfully maps the sensors data to correct output decision.

  • PDF

A qualitative evaluation method for engine and its operating-envelope using GSP (Gas turbine Simulation Program)

  • Kyung, Kyu-Hyung;Jun, Yong-Min;Yang, Soo-Seok;Choi, Dong-Whan
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.848-853
    • /
    • 2004
  • Regarding to the project SUAV (Smart Unmanned Aerial Vehicle) in KARI (Korea Aerospace Research Institute), several engine configurations has been evaluated. However it's not an easy task to collect all the necessary data of each engine for the analysis. Usually, some kind of modeling technique is required in order to determine the unknown data. In the present paper a qualitative method for reverse engineering is proposed, in order to identify some design patterns and relationships between parameters. The method can be used to estimate several parameters that usually are not provided by the manufacturer. The method consists of modeling an existing engine and through a simulation, compare its transient behavior with its operating envelope. In the simulation several parameters such as thermodynamics, performance, safety and mechanics concerning to the definition of operation-envelope, have been discussed qualitatively. With the model, all engine parameters can be estimated with acceptable accuracy, making possible the study of dependencies among different parameters such as power-turbine total inertia, TIT, take-off time and part load, in order to check if the engine transient performance is within the design criteria. For more realistic approach and more detailed design requirements, it will be necessary to enhance the compressor map first, and more realistic estimated values must be taken into account for intake-loss, bleed-air and auxiliary power extraction. The relative importance of these “unknown” parameters must be evaluated using sensitivity analysis in the future evaluation. Moreover, fluid dynamics, thermal analysis and stress analysis necessary for the resulting life assessment of en engine, will not be addressed here but in a future paper. With the methodology presented in the paper was possible to infer the relationships between operation-envelope and engine parameters.

  • PDF