• Title/Summary/Keyword: openAPI

Search Result 613, Processing Time 0.02 seconds

Visualizing the Results of Opinion Mining from Social Media Contents: Case Study of a Noodle Company (소셜미디어 콘텐츠의 오피니언 마이닝결과 시각화: N라면 사례 분석 연구)

  • Kim, Yoosin;Kwon, Do Young;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.89-105
    • /
    • 2014
  • After emergence of Internet, social media with highly interactive Web 2.0 applications has provided very user friendly means for consumers and companies to communicate with each other. Users have routinely published contents involving their opinions and interests in social media such as blogs, forums, chatting rooms, and discussion boards, and the contents are released real-time in the Internet. For that reason, many researchers and marketers regard social media contents as the source of information for business analytics to develop business insights, and many studies have reported results on mining business intelligence from Social media content. In particular, opinion mining and sentiment analysis, as a technique to extract, classify, understand, and assess the opinions implicit in text contents, are frequently applied into social media content analysis because it emphasizes determining sentiment polarity and extracting authors' opinions. A number of frameworks, methods, techniques and tools have been presented by these researchers. However, we have found some weaknesses from their methods which are often technically complicated and are not sufficiently user-friendly for helping business decisions and planning. In this study, we attempted to formulate a more comprehensive and practical approach to conduct opinion mining with visual deliverables. First, we described the entire cycle of practical opinion mining using Social media content from the initial data gathering stage to the final presentation session. Our proposed approach to opinion mining consists of four phases: collecting, qualifying, analyzing, and visualizing. In the first phase, analysts have to choose target social media. Each target media requires different ways for analysts to gain access. There are open-API, searching tools, DB2DB interface, purchasing contents, and so son. Second phase is pre-processing to generate useful materials for meaningful analysis. If we do not remove garbage data, results of social media analysis will not provide meaningful and useful business insights. To clean social media data, natural language processing techniques should be applied. The next step is the opinion mining phase where the cleansed social media content set is to be analyzed. The qualified data set includes not only user-generated contents but also content identification information such as creation date, author name, user id, content id, hit counts, review or reply, favorite, etc. Depending on the purpose of the analysis, researchers or data analysts can select a suitable mining tool. Topic extraction and buzz analysis are usually related to market trends analysis, while sentiment analysis is utilized to conduct reputation analysis. There are also various applications, such as stock prediction, product recommendation, sales forecasting, and so on. The last phase is visualization and presentation of analysis results. The major focus and purpose of this phase are to explain results of analysis and help users to comprehend its meaning. Therefore, to the extent possible, deliverables from this phase should be made simple, clear and easy to understand, rather than complex and flashy. To illustrate our approach, we conducted a case study on a leading Korean instant noodle company. We targeted the leading company, NS Food, with 66.5% of market share; the firm has kept No. 1 position in the Korean "Ramen" business for several decades. We collected a total of 11,869 pieces of contents including blogs, forum contents and news articles. After collecting social media content data, we generated instant noodle business specific language resources for data manipulation and analysis using natural language processing. In addition, we tried to classify contents in more detail categories such as marketing features, environment, reputation, etc. In those phase, we used free ware software programs such as TM, KoNLP, ggplot2 and plyr packages in R project. As the result, we presented several useful visualization outputs like domain specific lexicons, volume and sentiment graphs, topic word cloud, heat maps, valence tree map, and other visualized images to provide vivid, full-colored examples using open library software packages of the R project. Business actors can quickly detect areas by a swift glance that are weak, strong, positive, negative, quiet or loud. Heat map is able to explain movement of sentiment or volume in categories and time matrix which shows density of color on time periods. Valence tree map, one of the most comprehensive and holistic visualization models, should be very helpful for analysts and decision makers to quickly understand the "big picture" business situation with a hierarchical structure since tree-map can present buzz volume and sentiment with a visualized result in a certain period. This case study offers real-world business insights from market sensing which would demonstrate to practical-minded business users how they can use these types of results for timely decision making in response to on-going changes in the market. We believe our approach can provide practical and reliable guide to opinion mining with visualized results that are immediately useful, not just in food industry but in other industries as well.

Understanding User Motivations and Behavioral Process in Creating Video UGC: Focus on Theory of Implementation Intentions (Video UGC 제작 동기와 행위 과정에 관한 이해: 구현의도이론 (Theory of Implementation Intentions)의 적용을 중심으로)

  • Kim, Hyung-Jin;Song, Se-Min;Lee, Ho-Geun
    • Asia pacific journal of information systems
    • /
    • v.19 no.4
    • /
    • pp.125-148
    • /
    • 2009
  • UGC(User Generated Contents) is emerging as the center of e-business in the web 2.0 era. The trend reflects changing roles of users in production and consumption of contents on websites and helps us to understand new strategies of websites such as web portals and social network websites. Nowadays, we consume contents created by other non-professional users for both utilitarian (e.g., knowledge) and hedonic values (e.g., fun). Also, contents produced by ourselves (e.g., photo, video) are posted on websites so that our friends, family, and even the public can consume those contents. This means that non-professionals, who used to be passive audience in the past, are now creating contents and share their UGCs with others in the Web. Accessible media, tools, and applications have also reduced difficulty and complexity in the process of creating contents. Realizing that users create plenty of materials which are very interesting to other people, media companies (i.e., web portals and social networking websites) are adjusting their strategies and business models accordingly. Increased demand of UGC may lead to website visits which are the source of benefits from advertising. Therefore, they put more efforts into making their websites open platforms where UGCs can be created and shared among users without technical and methodological difficulties. Many websites have increasingly adopted new technologies such as RSS and openAPI. Some have even changed the structure of web pages so that UGC can be seen several times to more visitors. This mainstream of UGCs on websites indicates that acquiring more UGCs and supporting participating users have become important things to media companies. Although those companies need to understand why general users have shown increasing interest in creating and posting contents and what is important to them in the process of productions, few research results exist in this area to address these issues. Also, behavioral process in creating video UGCs has not been explored enough for the public to fully understand it. With a solid theoretical background (i.e., theory of implementation intentions), parts of our proposed research model mirror the process of user behaviors in creating video contents, which consist of intention to upload, intention to edit, edit, and upload. In addition, in order to explain how those behavioral intentions are developed, we investigated influences of antecedents from three motivational perspectives (i.e., intrinsic, editing software-oriented, and website's network effect-oriented). First, from the intrinsic motivation perspective, we studied the roles of self-expression, enjoyment, and social attention in forming intention to edit with preferred editing software or in forming intention to upload video contents to preferred websites. Second, we explored the roles of editing software for non-professionals to edit video contents, in terms of how it makes production process easier and how it is useful in the process. Finally, from the website characteristic-oriented perspective, we investigated the role of a website's network externality as an antecedent of users' intention to upload to preferred websites. The rationale is that posting UGCs on websites are basically social-oriented behaviors; thus, users prefer a website with the high level of network externality for contents uploading. This study adopted a longitudinal research design; we emailed recipients twice with different questionnaires. Guided by invitation email including a link to web survey page, respondents answered most of questions except edit and upload at the first survey. They were asked to provide information about UGC editing software they mainly used and preferred website to upload edited contents, and then asked to answer related questions. For example, before answering questions regarding network externality, they individually had to declare the name of the website to which they would be willing to upload. At the end of the first survey, we asked if they agreed to participate in the corresponding survey in a month. During twenty days, 333 complete responses were gathered in the first survey. One month later, we emailed those recipients to ask for participation in the second survey. 185 of the 333 recipients (about 56 percentages) answered in the second survey. Personalized questionnaires were provided for them to remind the names of editing software and website that they reported in the first survey. They answered the degree of editing with the software and the degree of uploading video contents to the website for the past one month. To all recipients of the two surveys, exchange tickets for books (about 5,000~10,000 Korean Won) were provided according to the frequency of participations. PLS analysis shows that user behaviors in creating video contents are well explained by the theory of implementation intentions. In fact, intention to upload significantly influences intention to edit in the process of accomplishing the goal behavior, upload. These relationships show the behavioral process that has been unclear in users' creating video contents for uploading and also highlight important roles of editing in the process. Regarding the intrinsic motivations, the results illustrated that users are likely to edit their own video contents in order to express their own intrinsic traits such as thoughts and feelings. Also, their intention to upload contents in preferred website is formed because they want to attract much attention from others through contents reflecting themselves. This result well corresponds to the roles of the website characteristic, namely, network externality. Based on the PLS results, the network effect of a website has significant influence on users' intention to upload to the preferred website. This indicates that users with social attention motivations are likely to upload their video UGCs to a website whose network size is big enough to realize their motivations easily. Finally, regarding editing software characteristic-oriented motivations, making exclusively-provided editing software more user-friendly (i.e., easy of use, usefulness) plays an important role in leading to users' intention to edit. Our research contributes to both academic scholars and professionals. For researchers, our results show that the theory of implementation intentions is well applied to the video UGC context and very useful to explain the relationship between implementation intentions and goal behaviors. With the theory, this study theoretically and empirically confirmed that editing is a different and important behavior from uploading behavior, and we tested the behavioral process of ordinary users in creating video UGCs, focusing on significant motivational factors in each step. In addition, parts of our research model are also rooted in the solid theoretical background such as the technology acceptance model and the theory of network externality to explain the effects of UGC-related motivations. For practitioners, our results suggest that media companies need to restructure their websites so that users' needs for social interaction through UGC (e.g., self-expression, social attention) are well met. Also, we emphasize strategic importance of the network size of websites in leading non-professionals to upload video contents to the websites. Those websites need to find a way to utilize the network effects for acquiring more UGCs. Finally, we suggest that some ways to improve editing software be considered as a way to increase edit behavior which is a very important process leading to UGC uploading.

Development of a Remote Multi-Task Debugger for Qplus-T RTOS (Qplus-T RTOS를 위한 원격 멀티 태스크 디버거의 개발)

  • 이광용;김흥남
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.4
    • /
    • pp.393-409
    • /
    • 2003
  • In this paper, we present a multi-task debugging environment for Qplus-T embedded-system such as internet information appliances. We will propose the structure and functions of a remote multi-task debugging environment supporting environment effective ross-development. And, we are going enhance the communication architecture between the host and target system to provide more efficient cross-development environment. The remote development toolset called Q+Esto consists to several independent support tools: an interactive shell, a remote debugger, a resource monitor, a target manager and a debug agent. Excepting a debug agent, all these support tools reside on the host systems. Using the remote multi-task debugger on the host, the developer can spawn and debug tasks on the target run-time system. It can also be attached to already-running tasks spawned from the application or from interactive shell. Application code can be viewed as C/C++ source, or as assembly-level code. It incorporates a variety of display windows for source, registers, local/global variables, stack frame, memory, event traces and so on. The target manager implements common functions that are shared by Q+Esto tools, e.g., the host-target communication, object file loading, and management of target-resident host tool´s memory pool and target system´s symbol-table, and so on. These functions are called OPEn C APIs and they greatly improve the extensibility of the Q+Esto Toolset. The Q+Esto target manager is responsible for communicating between host and target system. Also, there exist a counterpart on the target system communicating with the host target manager, which is called debug agent. Debug agent is a daemon task on real-time operating systems in the target system. It gets debugging requests from the host tools including debugger via target manager, interprets the requests, executes them and sends the results to the host.