• Title/Summary/Keyword: open-chain analogues

Search Result 3, Processing Time 0.016 seconds

Synthesis of Novel Carboacyclic Nucleosides with Vinyl Bromide Moiety as Open-chain Analogues of Neplanocin A

  • Choi, Myung-Hee;Kim, Hee-Doo
    • Archives of Pharmacal Research
    • /
    • v.26 no.12
    • /
    • pp.990-996
    • /
    • 2003
  • A novel carboacyclic nucleoside analogue, 9-[2-bromo-4-hydroxy-3-hydroxymethyl-2-butenyl] adenine, and its derivatives were designed and synthesized as open-chain analogues of neplanocin A. The syntheses were accomplished via the coupling of adenine or pyrimidine bases to the key intermediate allylic bromide 7. The bromide 7 was prepared from epichlorohydrin in a seven step process in a 54% overall yield. The synthesized compounds were evaluated for their antiviral activity against the polio virus, HSV and HIV.

Synthesis and Biological Evaluation of 9-[2-Fluoro-4-hydroxy-3-hydroxymethyl-2-butenyl]adenine and its Related Compounds as Open-chain Analogues of Neplanocin A

  • Choi, Myung-Hee;Kim, Hee-Doo
    • Archives of Pharmacal Research
    • /
    • v.20 no.5
    • /
    • pp.501-506
    • /
    • 1997
  • Novel 9-[2-fluoro-4-hydroxy-3-hydroxymethyl-2-butenyl]adenine and its related compounds were designed and synthesized as open-chain analogues of neplanocin A. Alkylation of adenine or pyrimidine bases with the mesylate 4 was chosen as a simple approach to the synthesis of 2-fluoro-2-butenylated nucleosides. Mesylate 4 was prepared from dihydroxyacetone dimer via four steps in 58% overall yield. The synthesized compounds were evaluated their antiviral activity against HSV, HIV and Polio viruses.

  • PDF

Cloning and Structural Analysis of bfmo Operon in Methylophaga aminosulfidovorans SK1 (Methylophaga aminosulfidovorans SKI bfmo 오페론의 클로닝 및 구조 분석)

  • Lim Hyun Sook;Goo Jae Whan;Kim Lee Hyun;Kim Si Wouk;Cho Eun Hee
    • Korean Journal of Microbiology
    • /
    • v.41 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Methylophaga aminosulfidovorans SK1 (KCTC 10323 BP) can utilize trimethylamine as a sole carbon, nitrogen, and energy source. The bacterial flavin-containing monooxygenase (bFMO) gene was identified in the strain and the recombinant enzyme expressed in E. coli oxidized trimethylamine. To study the function and regulation of the bfmo, over 8,000 nucleotide sequences of the neighboring regions including the bfmo were determined. Three open reading frames proceeding to the bfmo gene encoded analogues to highly conserved nitrate/nitrite sensing two-component system regulators and a methyl accepting protein. Two small open reading frames just downstream of the bfmo gene showed no similar proteins of known functions but the sequences were conserved among other bacteria. Reverse transcription-polymerase chain reaction analysis showed that the six putative genes consisted of three transcription units. The three regulatory genes located upstream of the bfmo gene formed two separate transcription units. The bfmo and the two downstream genes were transcribed from a single promoter.