• Title/Summary/Keyword: open porosity

Search Result 113, Processing Time 0.023 seconds

Variation of Manning's Coefficient due to Vegetation in Open Channel (개수로내 식생에 의한 Manning계수의 변화)

  • Kwon, Kab-Keun;Kim, Hyung-Seok;Yoon, Sung-Bum
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.401-404
    • /
    • 2008
  • The vegetation in the surrounding area of river is a primary factor to increase water level during flood. The influence of vegetation on the river flow in a bank has been investigated by using a hydraulic experiment. For a hydraulic experiment square-shaped piers are used as a model of unsubmerged rigid vegetation in a open channel. For fully developed uniform flows, the water elevation of the experiment was measured as varying the interval of piers and the porosity which presents the fraction of water flowing area in the cross-sectional area. The Manning's roughness coefficient, which implicates energy losses due to the vegetation, was obtained by using the experimental data. As a result, the energy losses were varied when the distance of piers and the porosity of area were changed, and the Manning's coefficient increased nonlinearly when a water elevation increased.

  • PDF

Free vibration of imperfect sigmoid and power law functionally graded beams

  • Avcar, Mehmet
    • Steel and Composite Structures
    • /
    • v.30 no.6
    • /
    • pp.603-615
    • /
    • 2019
  • In the present work, free vibration of beams made of imperfect functionally graded materials (FGMs) including porosities is investigated. Because of faults during process of manufacture, micro voids or porosities may arise in the FGMs, and this situation causes imperfection in the structure. Therefore, material properties of the beams are assumed to vary continuously through the thickness direction according to the volume fraction of constituents described with the modified rule of mixture including porosity volume fraction which covers two types of porosity distribution over the cross section, i.e., even and uneven distributions. The governing equations of power law FGM (P-FGM) and sigmoid law FGM (S-FGM) beams are derived within the frame works of classical beam theory (CBT) and first order shear deformation beam theory (FSDBT). The resulting equations are solved using separation of variables technique and assuming FG beams are simply supported at both ends. To validate the results numerous comparisons are carried out with available results of open literature. The effects of types of volume fraction function, beam theory and porosity volume fraction, as well as the variations of volume fraction index, span to depth ratio and porosity volume fraction, on the first three non-dimensional frequencies are examined in detail.

Effects of subsequent curing on chloride resistance and microstructure of steam-cured mortar

  • Hu, Yuquan;Hu, Shaowei;Yang, Bokai;Wang, Siyao
    • Advances in concrete construction
    • /
    • v.9 no.5
    • /
    • pp.449-457
    • /
    • 2020
  • The influence of subsequent curing on the performance of fly ash contained mortar under steam curing was studied. Mortar samples incorporated with different content (0%, 20%, 50% and 70%) of Class F fly ash under five typical subsequent curing conditions, including standard curing (ZS), water curing(ZW) under 25℃, oven-dry curing (ZD) under 60℃, frozen curing (ZF) under -10℃, and nature curing (ZN) exposed to outdoor environment were implemented. The unsteady chloride diffusion coefficient was measured by rapid chloride migration test (RCM) to analyze the influence of subsequent curing condition on the resistance to chloride penetration of fly ash contained mortar under steam curing. The compressive strength was measured to analyze the mechanical properties. Furthermore, the open porosity, mercury intrusion porosimetry (MIP), x-ray diffraction (XRD) and thermogravimetric analysis (TGA) were examined to investigate the pore characteristics and phase composition of mortar. The results indicate that the resistance to chloride ingress and compressive strength of steam-cured mortar decline with the increase of fly ash incorporated, regardless of the subsequent curing condition. Compared to ZS, ZD and ZF lead to poor resistance to chloride penetration, while ZW and ZN show better performance. Interestingly, under different fly ash contents, the declining order of compressive strength remains ZS>ZW>ZN>ZD>ZF. When the fly ash content is blow 50%, the open porosity grows with increase of fly ash, regardless of the curing conditions are diverse. However, if the replacement amount of fly ash exceeds a certain high proportion (70%), the value of open porosity tends to decrease. Moreover, the main phase composition of the mortar hydration products is similar under different curing conditions, but the declining order of the C-S-H gels and ettringite content is ZS>ZD>ZF. The addition of fly ash could increase the amount of harmless pores at early age.

Effect of the Addition of Aluminium Distearate on Manufacturing of $UO_2$ Nuclear Fuel (Aluminium Distearate 첨가가 $UO_2$ 핵연료 제조에 미치는 영향)

  • 박지연;정충환;김영석
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.8
    • /
    • pp.609-616
    • /
    • 1992
  • This study has been investigated on the milling of Aluminium Distearate (ADS) powder and characteristics of the ADS-doped UO2 pellets. As-received ADS powder of the agglomerated particles has not shown any milling effect because of heat generated during planetary milling. But the use of coolant to effectively remove heat generated during milling has been found an effective way in breaking up the agglomerates of ADS powder. The green density of the UO2 pellet decreases with the amount of ADS powder doped. Therefore, in order to get the sintered density of 95% pellet decreases with the amount of ADS powder doped. Therefore, in order to get the sintered density of 95% theoretical density, the 200 ppm ADS-doped UO2 pellet has to be pressed under higher compacting pressure of 3500~4000 kgf/$\textrm{cm}^2$ compared with the ADS-undoped UO2 pellet pressed under around 3000 kgf/$\textrm{cm}^2$. The ADS-dpoed UO2 pellet with even relatively low sintered density of 10.27 g/㎤ exhibits open porosity of 1% while open porosity of the ADS-undoped UO2 pellet is reduced to around 1% only after its sintered density increases to 10.43g/㎤. It is, therefore, concluded that doping of ADS powder significantly contributes to the decrease in open porosity of the UO2 pellet. The dilatometry of the ADS doped UO2 pellet shows the sintering rate curve with the bimodal mode, which could be attributed to a phase reaction between UO2 and ADS. The X-ray diffraction analysis indicates that there occurs not any new phase formed but the shift of the peaks. It would be expected that a phase reaction resulting in solid solution would happen in the temperature range of 130$0^{\circ}C$ to 150$0^{\circ}C$ between UO2 and ADS.

  • PDF

The Effect of Fe and Fe2O3 Powder Mixing Ratios on the Pore Properties of Fe Foam Fabricated by a Slurry Coating Process (슬러리 코팅 공정으로 제조된 Fe 폼의 기공 특성에 미치는 Fe 및 Fe2O3 분말의 혼합 비율의 영향)

  • Choi, Jin Ho;Jeong, Eun-Mi;Park, Dahee;Yang, Sangsun;Hahn, Yoo-Dong;Yun, Jung-Yeul
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.266-270
    • /
    • 2014
  • Metal foams have a cellular structure consisting of a solid metal containing a large volume fraction of pores. In particular, open, penetrating pores are necessary for industrial applications such as in high temperature filters and as a support for catalysts. In this study, Fe foam with above 90% porosity and 2 millimeter pore size was successfully fabricated by a slurry coating process and the pore properties were characterized. The Fe and $Fe_2O_3$ powder mixing ratios were controlled to produce Fe foams with different pore size and porosity. First, the slurry was prepared by uniform mixing with powders, distilled water and polyvinyl alcohol(PVA). After slurry coating on the polyurethane(PU) foam, the sample was dried at $80^{\circ}C$. The PVA and PU foams were then removed by heating at $700^{\circ}C$ for 3 hours. The debinded samples were subsequently sintered at $1250^{\circ}C$ with a holding time of 3 hours under hydrogen atmosphere. The three dimensional geometries of the obtained Fe foams with an open cell structure were investigated using X-ray micro CT(computed tomography) as well as the pore morphology, size and phase. The coated amount of slurry on the PU foam were increased with $Fe_2O_3$ mixing powder ratio but the shrinkage and porosity of Fe foams were decreased with $Fe_2O_3$ mixing powder ratio.

Enhancement of Porosity and Strength of Porous Al2O3 Ceramics by Al(H2PO4)3 Addition

  • Bai, Jiahai;Piao, Jiasi;Gao, Jie;He, Jing;Du, Qingyang;Li, Chengfeng
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.4
    • /
    • pp.350-353
    • /
    • 2019
  • Porous alumina ceramics with addition of 0, 5, 10, 15, and 20 wt% Al(H2PO4)3 were sintered at 1300, 1350, and 1400℃. The effects of the Al(H2PO4)3 addition on crystal phases, water absorption, open porosity, pore size distribution, microstructures, and flexural strength were studied extensively. The experimental results revealed that only characteristic peaks of corundum were indexed in the XRD patterns of the as-prepared porous ceramics. The water absorption and open porosity of the porous Al2O3 ceramics increased remarkably with an increase in Al(H2PO4)3 addition. The flexural strength first increased to a maximum value when 5 wt% Al(H2PO4)3 was added and then decreased as additional Al(H2PO4)3 was further added. SEM images showed that the average Al2O3 grain size in the porous ceramics changed in an opposite way as the flexural strength. The porous Al2O3 ceramics with 10 wt% Al(H2PO4)3 addition exhibited comparable flexural strength to the ceramics without Al(H2PO4)3 addition, although the latter had much higher porosity.

Preparation and Performance of Aluminosilicate Fibrous Porous Ceramics Via Vacuum Suction Filtration

  • Qingqing Wang;Shaofeng Zhu;Zhenfan Chen;Tong Zhang
    • Korean Journal of Materials Research
    • /
    • v.34 no.1
    • /
    • pp.12-20
    • /
    • 2024
  • This study successfully prepared high-porosity aluminosilicate fibrous porous ceramics through vacuum suction filtration using aluminosilicate fiber as the primary raw material and glass powder as binder, with the appropriate incorporation of glass fiber. The effects of the composition of raw materials and sintering process on the structure and properties of the material were studied. The results show that when the content of glass powder reached 20 wt% and the samples were sintered at the temperature of 1,000 ℃, strong bonds were formed between the binder phase and fibers, resulting in a compressive strength of 0.63 MPa. When the sintering temperatures were increased from 1,000 ℃ to 1,200, the open porosity of the samples decreased from 89.08 % to 82.38 %, while the linear shrinkage increased from 1.13 % to 10.17 %. Meanwhile, during the sintering process, a large amount of cristobalite and mullite were precipitated from the aluminosilicate fibers, which reduced the performance of the aluminosilicate fibers and hindered the comprehensive improvement in sample performance. Based on these conditions, after adding 30 wt% glass fiber and being sintered at 1,000 ℃, the sample exhibited higher compressive strength (1.34 MPa), higher open porosity (89.13 %), and lower linear shrinkage (5.26 %). The aluminosilicate fibrous porous ceramic samples exhibited excellent permeability performance due to their high porosity and interconnected three-dimensional pore structures. When the samples were filtered at a flow rate of 150 mL/min, the measured pressure drop and permeability were 0.56 KPa and 0.77 × 10-6 m2 respectively.

Fabrication of Porous Yttria-Stabilized Zirconias Controlled by Additives

  • Paek, Yeong-Kyeun;Oh, Kyung-Sik;Lee, Hyuk-Jae
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.2 s.297
    • /
    • pp.79-83
    • /
    • 2007
  • To fabricate a thick, porous yttria-stabilized zirconia without cracking and warping, a method for the simultaneous control of the porosity and shrinkage was designed. As a pore former, a potato starch was used. For the control of shrinkage the oxidation of Al metal particles was used. For the sintering of the above powder mixtures, a partial sintering technique was used at $1300^{\circ}C$ for 10 min in air. Upon adding the additives, high open porosity above 53% and a low shrinkage level were obtained. As a result cracking and warping of the sintered body were deterred. This outcome most likely resulted from the compensation of sintering shrinkage due to the volume expansion caused by oxidation of the Al metal particles during heat-treatment.

A Study of the Impulse Wave Discharged from a Perforated Pipe (다공관으로부터 방출되는 펄스파에 관한 연구)

  • Shin Hyun Dong;Kweon Yong Hun;Kim Heuy Dong
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.95-98
    • /
    • 2003
  • When a shock wave discharges from an open end of a duct, an impulse wave is generated outside the duct, causing serious noise and vibration problems. The magnitude of the impulse wave can be reduced by installing of a perforated duct. In the current study, the characteristics of the impulse wave discharged from the exit of a perforated duct are numerically investigated. A TVD (total variation diminishing) scheme is used to solve the unsteady, axisymmetric, compressible Euler equations. In computations, the porosity of a perforated pipe $(\sigma)$ and the Mach number of incident shock wave $(M_s)$ are varied in the range of $\sigma=0\~19\%\;and\;M_s=1.01\~1.50$, respectively. The results show that the directivity and magnitude of impulse wave strongly depend upon the Mach number of incident shock wave and the porosity of the perforated pipe. The present CFD results are in close agreement with experimental results.

  • PDF

Experimental Study on Saltation of Sand Particles Located behind Porous Wind Fences (바람에 의한 야적모래입자의 비산에 관한 실험적 연구)

  • Park, Ki-Chul;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.740-745
    • /
    • 2000
  • Effects of porous fences on the wind erosion of sand particles from a triangular pile were investigated experimentally. The porous fence and sand pile were installed in a simulated atmospheric boundary layer. The mean velocity and turbulent intensity profiles measured at the sand pile location were well fitted to the atmospheric boundary layer over the open terrain. Particle motion was visualized to see the motion of windblown sand particles qualitatively. In addition, the threshold velocity were measured using a light sensitive video camera with varying the fence porosity ${\varepsilon}$. As a result, various types of particle motion were observed according to the fence porosity. The porous wind fence having porosity ${\varepsilon}=30%$ was revealed to have the maximum threshold velocity, indicating good shelter effect for abating windblown dust particles.

  • PDF