• Title/Summary/Keyword: oocyte meiosis

Search Result 36, Processing Time 0.027 seconds

Role of Type 1 Inositol 1,4,5-triphosphate Receptors in Mammalian Oocytes

  • Yoon, Sook Young
    • Development and Reproduction
    • /
    • v.23 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • The ability of oocytes to undergo normal fertilization and embryo development is acquired during oocyte maturation which is transition from the germinal vesicle stage (GV), germinal vesicle breakdown (GVBD) to metaphase of meiosis II (MII). Part of this process includes redistribution of inositol 1, 4, 5-triphosphate receptor (IP3R), a predominant $Ca^{2+}$ channel on the endoplasmic reticulum membrane. Type 1 IP3R (IP3R1) is expressed in mouse oocytes dominantly. At GV stage, IP3R1 are arranged as a network throughout the cytoplasm with minute accumulation around the nucleus. At MII stage, IP3R1 diffuses to the entire cytoplasm in a more reticular manner, and obvious clusters of IP3R1 are observed at the cortex of the egg. This structural reorganization provides acquisition of $[Ca^{2+}]_i$ oscillatory activity during fertilization. In this review, general properties of IP3R1 in somatic cells and mammalian oocyte are introduced.

Post-transcriptional and post-translational regulation during mouse oocyte maturation

  • Kang, Min-Kook;Han, Seung-Jin
    • BMB Reports
    • /
    • v.44 no.3
    • /
    • pp.147-157
    • /
    • 2011
  • The meiotic process from the primordial stage to zygote in female germ cells is mainly adjusted by post-transcriptional regulation of pre-existing maternal mRNA and post-translational modification of proteins. Several key proteins such as the cell cycle regulator, Cdk1/cyclin B, are post-translationally modified for precise control of meiotic progression. The second messenger (cAMP), kinases (PKA, Akt, MAPK, Aurora A, CaMK II, etc), phosphatases (Cdc25, Cdc14), and other proteins (G-protein coupled receptor, phosphodiesterase) are directly or indirectly involved in this process. Many proteins, such as CPEB, maskin, eIF4E, eIF4G, 4E-BP, and 4E-T, post-transcriptionally regulate mRNA via binding to the cap structure at the 5' end of mRNA or its 3' untranslated region (UTR) to generate a closed-loop structure. The 3' UTR of the transcript is also implicated in post-transcriptional regulation through an association with proteins such as CPEB, CPSF, GLD-2, PARN, and Dazl to modulate poly(A) tail length. RNA interfering is a new regulatory mechanism of the amount of mRNA in the mouse oocyte. This review summarizes information about post-transcriptional and post-translational regulation during mouse oocyte meiotic maturation.

Function of the pentose phosphate pathway and its key enzyme, transketolase, in the regulation of the meiotic cell cycle in oocytes

  • Kim, Yunna;Kim, Eun-Young;Seo, You-Mi;Yoon, Tae Ki;Lee, Woo-Sik;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.39 no.2
    • /
    • pp.58-67
    • /
    • 2012
  • Objective: Previously, we identified that transketolase (Tkt), an important enzyme in the pentose phosphate pathway, is highly expressed at 2 hours of spontaneous maturation in oocytes. Therefore, this study was performed to determine the function of Tkt in meiotic cell cycle regulation, especially at the point of germinal vesicle breakdown (GVBD). Methods: We evaluated the loss-of-function of Tkt by microinjecting Tkt double-stranded RNAs (dsRNAs) into germinal vesicle-stage oocytes, and the oocytes were cultured in vitro to evaluate phenotypic changes during oocyte maturation. In addition to maturation rates, meiotic spindle and chromosome rearrangements, and changes in expression of other enzymes in the pentose phosphate pathway were determined after Tkt RNA interference (RNAi). Results: Despite the complete and specific knockdown of Tkt expression, GVBD occurred and meiosis was arrested at the metaphase I (MI) stage. The arrested oocytes exhibited spindle loss, chromosomal aggregation, and declined maturation promoting factor and mitogen-activated protein kinase activities. The modified expression of two enzymes in the pentose phosphate pathway, Prps1 and Rbks, after Tkt RNAi and decreased maturation rates were amended when ribose-5-phosphate was supplemented in the culture medium, suggesting that the Tkt and pentose phosphate pathway are important for the maturation process. Conclusion: We concluded that Tkt and its associated pentose phosphate pathway play an important role in the MI-MII transition of the oocytes' meiotic cell cycle, but not in the process of GVBD.

Stage-specific Expression of Lanosterol 14${\alpha}$-Demethylase in Mouse Oocytes in Relation to Fertilization and Embryo Development Competence

  • Song, Xiaoming;Ouyang, Hong;Tai, Ping;Chen, Xiufen;Xu, Baoshan;Yan, Jun;Xia, Guoliang;Zhang, Meijia
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.3
    • /
    • pp.319-327
    • /
    • 2009
  • Follicular fluid meiosis-activating sterol (FF-MAS) has been suggested as a positive factor which could improve the oocyte quality and subsequent embryo development after in vitro fertilization. However, FF-MAS is a highly lipophilic substance and is hard to detect in studying the relationship between MAS and quality of oocyte maturation. The present study focused on the expression of lanosterol 14${\alpha}$-demethylase (LDM), a key enzyme that converts lanosterol to FF-MAS, on mouse oocyte maturation and its potency on development. LDM expression was strong in gonadotropin-primed germinal vesicle stage oocytes, weak after germinal vesicle breakdown (GVBD), and then strong in MII stage oocytes. The LDM-specific inhibitor azalanstat significantly inhibited oocyte fertilization (from 79.4% to 68.3%, p<0.05). Also, azalanstat (5 to 50 ${\mu}M$) decreased the percentage of blastocyst development dosedependently (from 78.7% to 23.4%, p<0.05). The specific inhibition of sterol ${\Delta}14$-reductase and ${\Delta}7$-reductase by AY9944 accumulates FF-MAS and could increase blastocyst development rates. Additionally, in the AY9944 group, the rate of inner cell mass (ICM)/ total cells was similar to that of in vivo development, but the rate was significantly decreased in azalanstat treatment. In conclusion, LDM, the key enzyme of FF-MAS production, may play an important role in fertilization and early development of the mouse embryo, especially in vitro.

Immunofluorescence and Electron Microscopic Study on the Artificial Insemination and Rotation-Shift Behaviors of the Bipolar Spindle Fiber in U. unicinctus Egg (U. unicinctus 난자의 인공수정과 감수분열 장치의 회전-이동행위에 관한 면역형광현미경 및 전자현미경적 연구)

  • Kwon, Hyuk-Jae;Jeong, Jin-Wook;Kim, Wan-Jong;Shin, Kil-Sang
    • Applied Microscopy
    • /
    • v.33 no.2
    • /
    • pp.105-116
    • /
    • 2003
  • In Vitro fertilization of U. unicinctus eggs observed by immunofluorescence and electron microscopes revealed an overview of the meiotic pattern of the tide animals. The eggs have been fertilized early at germinal vesicle stage, followed by germinal vesicle break down (GVBD), but pre-mitotic aster like structure could not be resolved by the methods employed in this work. The meiotic features, such as rotation-shift movement of spindle fibers, behavior of spermatozoonmonaster in the egg cytoplasm and active spindle fiber of the 1st polar body, have been observed. The antitubulin-FITC fluorescence show the 2nd meiotic apparatus appeared firstly parallel to the tangential line of the oolemma, proceeding the meiosis, its bipolarity is rotated and shifted towards the oolemma. The polar bodysite of the oolemma was not amorphous, but active in a sense of anti-tubulin-FITC reactions during the extrusions of the polar bodies. The immunofluorescence reactions of the spermatozoon centriole appeared at a later stage of the 2nd meiosis. During the time periods, the fertilized spermatozoon resided in the egg cytoplasm. Activating the centrioles, spermatozoon approaches towards the chromosomal materials of the 2nd oocyte. This suggests that spermatozoon centrioles initiate and play a roll to fuse male and female pronuclei.

Oocyte Maturation Process of Zebrafish (Danio rerio), an Emerging Animal Model (새로운 실험 동물 모델인 제브라피쉬(Danio rerio)의 난자 성숙 기작)

  • Han, Seung Jin
    • Journal of Life Science
    • /
    • v.25 no.10
    • /
    • pp.1184-1195
    • /
    • 2015
  • The zebrafish is an emerging vertebrate model organism in reproductive biology. The oocyte maturation of zebrafish is triggered by maturation inducing hormone (MIH, 17α,20β-Dihydroxy-4-pregnen-3-one). In almost all animals, the oocyte maturation is governed by activation of pre-MPF which consists of cyclinB and inactive Cdk1. In the oocyte of Xenopus and mice, the activity of Cdk1 is regulated in two ways, one is the interaction with cyclinB and the other is phosphorylation/dephosphorylation of T14/Y15 residues on the Cdk1 by Wee1 and Cdc25. Unlike Xenopus and mice that have a sufficient amount of pre-MPF, pre-MPF is absent in GV oocyte of most teleost including zebrafish. Therefore, the activation of MPF during zebrafish oocyte maturation might totally depend on de novo synthesis of cyclinB proteins. It is reported that the translation of maternal mRNA is regulated by combination of several RNA binding proteins such as CPEB, Dazl, Pum1/Pum2, and insulin-like growth factor2 mRNA-binding protein 3 in the zebrafish oocytes. However, the definitive mechanism of these proteins to regulate the translation of stored maternal mRNAs remains to be elucidated. Therefore, the investigation of the maturation process of the zebrafish oocyte will provide new information that can help identify the role of translational control in early vertebrate oocyte maturation.

성장중인 생쥐와 돼지난자의 성숙억제요인에 관하여

  • 이원교;권혁방
    • The Korean Journal of Zoology
    • /
    • v.31 no.4
    • /
    • pp.265-272
    • /
    • 1988
  • 세포융합방법을 사용하여 성장증인 포유동물의 난자에 들어있는 성숙억제요인(maturation inhibiting activity, 1연Al에 대해 조사하였다. 성장중인 생쥐난자와 성장한 미성숙난자를 1:1로 융합하여 배양했을 서 (14-17시간)에는 거의 모두 핵붕괴를 일으키었으나(90oyo), 2:1로 융합했을 때는 대부분(약 64%) 3개의 핵을 모두 간직하고 있었다. 돼지난자의 경우는 성장중인 것깎 성장한 것을 1:1로 융합하여 배양했을 때에도 융합체들은 모두 핵을 간직하고 있었으며 돼지의 성장중인 난자와 생쥐의 성장한 난자를 융합했을 때에도 모두 핵을 보존하고 있었다. 이에 반하여 돼지와 생쥐 모두에서 성장한 난자끼리 융합했을 때에는 예외없이 핵붕괴가 일어났다. 이러한 결과는 성장중인 생쥐나 돼지의 난자에 각IA가 존재한다는 열과 이종간에도 효과가 있다는 것을 보여주고 있다. 또한 이는 MIA와 성숙촉진요인(maturation promoting factor, MPH의 상대적인 양의 변화가 난자의 성숙조절에 증요한 9f할을 한다는 것을 시사해주고 있다.In an attempt to elucidate the nature of maturation inhibiting activity (MIA) in growing mamma-lian oocvtes, growing mouse and pig oocytes incompetent to resume meiosis were fused with fully grown immature oocvtes in various combinations and cultured for 14-17 hours. In slant cells composed of two mouse growing ooh임es and one large immature oocyte (2:기, their GVs remained well conserved (about 64%) after culture, but not in the ceils composed of one by one pairs. In giant cells of pig composed of one growing and onto large immature oocytes, both GVs remained conserved. In the cells composed of one pig growing and one mouse large oocytes, both GVs were also conserved. In contrast to this, pairs of large mouse oocvtes or those of large pig oocvtes had no CVs after culture. Thus, we could acertain the existEnce of MIA and none-pecificty of it in the mouse and pig growing oocvtes. The results also suggest that the relative amount of substances showlns MfA or MPF activity may be important in the regulation of oocyte amount of substances showing MIA or MPF activity may be important in the regulation of oocyte maturation.

  • PDF

Immature Oocyte-Specific Zap70 and Its Functional Analysis in Regulating Oocyte Maturation

  • Kim, Yun-Na;Kim, Eun-Ju;Kim, Eun-Young;Lee, Hyun-Seo;Kim, Kyeoung-Hwa;Lee, Kyung-Ah
    • Development and Reproduction
    • /
    • v.13 no.3
    • /
    • pp.145-153
    • /
    • 2009
  • Previously, we obtained the list of genes differentially expressed between GV and MII oocytes. Out of the list, we focused on functional analysis of Zap70 in the present study, because it has been known to be expressed only in immune cells. This is the first report about the expression and its function of Zap70 in the oocytes. Synthetic 475 bp Zap70 dsRNA was microinjected into the GV oocytes, and the oocytes were cultured in vitro. In addition to maturation rates, meiotic spindle and chromosome rearrangements, and changes in expression levels of transcripts of three kinases, Erk1/2, JNK, and p38, were determined. Zap70 is highly expressed in immature GV oocytes, and gradually decreased as oocyte matured. When dsRNA of Zap70 was injected into the GV oocytes, Zap70 mRNA specifically and completely decreased by 2 hr and its protein expression also decreased significantly. Absence of Zap70 resulted in maturation inhibition at meiosis I (57%) with abnormalities in meiotic spindle formation and chromosome rearrangement. Concurrently, mRNA expression of Erk2, JNK, and p38, were affected by Zap70 RNAi. Therefore, we concluded that Zap70 is involved in MI-MII transition by affecting expression of MAP kinases.

  • PDF

Nitric Oxide Exerts Different Functions on Porcine Oocytes Cultured in Different Models, Which is Affected by Beta-mercaptoethanol

  • Tao, Yong;Xia, Guoliang;Bo, Shumin;Zhou, Bo;Zhang, Meijia;Wang, Fenghao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.3
    • /
    • pp.317-324
    • /
    • 2004
  • The present study was conducted to investigate the involvement of nitric oxide (NO) in cumulus expansion, oocyte mortality and meiotic maturation of porcine cumulus enclosed oocytes (CEOs) cultured in two different models when gonadotropins, including follicle-stimulating hormone (FSH) and human chorionic gonadotropin (hCG) were presented or not. And the interaction between NO and $\beta$-mercaptoethanol ($\beta$-ME), a free radical scavenger was also investigated. Two models refer to spontaneous maturation model and hypoxanthine (HX) medium model. All the 3,433 eligible CEOs were incubated at $39^{\circ}C$ and the cumulus expansion, oocyte morphology and nuclear phase were evaluated 44 h after incubation. (1) In spontaneous maturation model, NO stimulates the cumulus expansion and $\beta$-ME delayed it. NO doesn't affect the oocyte meiotic resumption but inhibits the oocytes to develop to metaphase II. (2) In HX medium model, NO or $\beta$-ME doesn't affect the expansion in the absence of gonadotropins, but in the presence of gonadotropins, NO or $\beta$-ME inhibits the expansion. In the presence of gonadotropins, NO inhibits the oocyte meiotic resumption and it especially inhibits the oocyte to develop to metaphase II, and $\beta$-ME reverses such inhibitory effects. The cooperation of gonadotropins and $\beta$-ME stimulates the meiotic resumption and especially, promotes the CEOs to develop to metaphase II in both models. Moreover, HX might contribute to the fragility of oocyte zona pellucida and gonadotropins, nitric oxide and $\beta$-ME could alleviate it separately, and cooperatively. It is concluded that NO exerts different functions in two models and $\beta$-ME affected the functions of NO in different models.

Studies on In Vitro Maturation of Pig Follicular Oocytes (돼지 난포란의 체외성숙에 관한 연구)

  • 김창근;정영채;이명식;윤종택;방명걸;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.14 no.1
    • /
    • pp.84-91
    • /
    • 1990
  • Experiments were disigned to define and optimize efficiency of a system whereby pig follicular oocytes could be matured and fertil ized in vitro. The pig oocytes removed from 1- 2 mm and 3-7 mm follicles were cultured in vitro in the mKRB(-BSA) solution containing estrous sow serum (ESS), FCS or dialyzed pig follicular fluid for 24 to 48 hr at 37$^{\circ}C$. The oocytes matured in vitro were evaluated after epididymal spermatozoa-oocyte incubation for 24 hr for pronucleus formation. 50-60% of the oocytes reached metaphase II during 36 to 48 hr of culture. There was no differernce in oocyte matura¬tion between two groups of follicular size but meiosis was slightly faster in the 3-7 mm follicular oocytes. The oocytes matured in mKRB (-BSA) plus 5% ESS, 15% FCS or dialyzed follicular fraction showed slightly higher maturation rates than the control mKRB. in vitro fertilization, pronucleus formation, tended to be increased when mKRBi-BSA) plus 5% ESS or 15% FCS was used for oocyte maturation and in vivo -capacitated spermatozoa were inseminated, respectively. It is concluded that ESS, FCS and dialyzed pig follicular fluid may be effective factors for in vitro maturation and fertilization of pig follicular oocytes.

  • PDF