• Title/Summary/Keyword: online information search

Search Result 494, Processing Time 0.048 seconds

The way to make training data for deep learning model to recognize keywords in product catalog image at E-commerce (온라인 쇼핑몰에서 상품 설명 이미지 내의 키워드 인식을 위한 딥러닝 훈련 데이터 자동 생성 방안)

  • Kim, Kitae;Oh, Wonseok;Lim, Geunwon;Cha, Eunwoo;Shin, Minyoung;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.1-23
    • /
    • 2018
  • From the 21st century, various high-quality services have come up with the growth of the internet or 'Information and Communication Technologies'. Especially, the scale of E-commerce industry in which Amazon and E-bay are standing out is exploding in a large way. As E-commerce grows, Customers could get what they want to buy easily while comparing various products because more products have been registered at online shopping malls. However, a problem has arisen with the growth of E-commerce. As too many products have been registered, it has become difficult for customers to search what they really need in the flood of products. When customers search for desired products with a generalized keyword, too many products have come out as a result. On the contrary, few products have been searched if customers type in details of products because concrete product-attributes have been registered rarely. In this situation, recognizing texts in images automatically with a machine can be a solution. Because bulk of product details are written in catalogs as image format, most of product information are not searched with text inputs in the current text-based searching system. It means if information in images can be converted to text format, customers can search products with product-details, which make them shop more conveniently. There are various existing OCR(Optical Character Recognition) programs which can recognize texts in images. But existing OCR programs are hard to be applied to catalog because they have problems in recognizing texts in certain circumstances, like texts are not big enough or fonts are not consistent. Therefore, this research suggests the way to recognize keywords in catalog with the Deep Learning algorithm which is state of the art in image-recognition area from 2010s. Single Shot Multibox Detector(SSD), which is a credited model for object-detection performance, can be used with structures re-designed to take into account the difference of text from object. But there is an issue that SSD model needs a lot of labeled-train data to be trained, because of the characteristic of deep learning algorithms, that it should be trained by supervised-learning. To collect data, we can try labelling location and classification information to texts in catalog manually. But if data are collected manually, many problems would come up. Some keywords would be missed because human can make mistakes while labelling train data. And it becomes too time-consuming to collect train data considering the scale of data needed or costly if a lot of workers are hired to shorten the time. Furthermore, if some specific keywords are needed to be trained, searching images that have the words would be difficult, as well. To solve the data issue, this research developed a program which create train data automatically. This program can make images which have various keywords and pictures like catalog and save location-information of keywords at the same time. With this program, not only data can be collected efficiently, but also the performance of SSD model becomes better. The SSD model recorded 81.99% of recognition rate with 20,000 data created by the program. Moreover, this research had an efficiency test of SSD model according to data differences to analyze what feature of data exert influence upon the performance of recognizing texts in images. As a result, it is figured out that the number of labeled keywords, the addition of overlapped keyword label, the existence of keywords that is not labeled, the spaces among keywords and the differences of background images are related to the performance of SSD model. This test can lead performance improvement of SSD model or other text-recognizing machine based on deep learning algorithm with high-quality data. SSD model which is re-designed to recognize texts in images and the program developed for creating train data are expected to contribute to improvement of searching system in E-commerce. Suppliers can put less time to register keywords for products and customers can search products with product-details which is written on the catalog.

Information System Evaluation using IPA Method (IPA 기법을 활용한 정보시스템 평가)

  • Park, Minsoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.431-436
    • /
    • 2020
  • Information service organizations that provide science and technology information with a relatively short information life cycle for free or paid are in need of reflecting rapidly changing user needs and behaviors and grafting the latest technologies. The purpose of this study is to derive improvements for each system by comparing and analyzing general recognition of science and technology information users' domestic and foreign science and technology information sites and importance by science and technology information attributes. A total of 816 users of science and technology information participated in the online survey, and the collected data were analyzed by quantitative methods including IPA (Importance Performance Analysis) technique. The importance was evaluated by the impact value calculated through regression analysis. As a result of data analysis, the general recognition of users on science and technology information sites was relatively high in national science and technology information services, and Google Scholar and Science Direct were also high. Google Scholar was found to have more strength than improvement. A better understanding of the user's preferred system is a good driving force for improving the lack of existing systems. It is necessary to improve the information retrieval of the science and technology information service system, that is, to improve the search speed and functions, and also to improve the user interface with improved convenience and usability.

Sentiment Analysis of movie review for predicting movie rating (영화리뷰 감성 분석을 통한 평점 예측 연구)

  • Jo, Jung-Tae;Choi, Sang-Hyun
    • Management & Information Systems Review
    • /
    • v.34 no.3
    • /
    • pp.161-177
    • /
    • 2015
  • Currently, the influence of the Internet portal sites that can make it quick and easy to contact the vast amount of information is increasing. Users can connect the Internet through a portal to obtain information, such as communication between Internet users, which can be used to meet a variety of purposes. People are exposed to a variety of information from other users in the search for a movie and get information. The impact on the reviews and ratings with the limited number of characters of the film allows users to form a relationship to the movie, decide whether you want to see the movie or find another movie. but, the user can not read the whole movie review. When user see the overall evaluation, the user can receive the correct information. This research conducted a study on the prediction of the rating by the use of review data. Information of reviews, is divided into two main areas: the"fact" and "opinion". "Fact" is to convey the dispassionate information and "Opinion" is, to represent the user's feelings. In this study, we built sentiment dictionary based on the assessment and evaluation of the online review and applied to evaluate other movies. In the comparative study with a simple emotion evaluation technique, we found the suggested algorithm got the more accurate results.

  • PDF

A Study of the Beauty Commerce Customer Segment Classification and Application based on Machine Learning: Focusing on Untact Service (머신러닝 기반의 뷰티 커머스 고객 세그먼트 분류 및 활용 방안: 언택트 서비스 중심으로)

  • Sang-Hyeak Yoon;Yoon-Jin Choi;So-Hyun Lee;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.22 no.4
    • /
    • pp.75-92
    • /
    • 2020
  • As population and generation structures change, more and more customers tend to avoid facing relation due to the development of information technology and spread of smart phones. This phenomenon consists with efficiency and immediacy, which are the consumption patterns of modern customers who are used to information technology, so offline network-oriented distribution companies actively try to switch their sales and services to untact patterns. Recently, untact services are boosted in various fields, but beauty products are not easy to be recommended through untact services due to many options depending on skin types and conditions. There have been many studies on recommendations and development of recommendation systems in the online beauty field, but most of them are the ones that develop recommendation algorithm using survey or social data. In other words, there were not enough studies that classify segments based on user information such as skin types and product preference. Therefore, this study classifies customer segments using machine learning technique K-prototypesalgorithm based on customer information and search log data of mobile application, which is one of untact services in the beauty field, based on which, untact marketing strategy is suggested. This study expands the scope of the previous literature by classifying customer segments using the machine learning technique. This study is practically meaningful in that it classifies customer segments by reflecting new consumption trend of untact service, and based on this, it suggests a specific plan that can be used in untact services of the beauty field.

Analysis and Evaluation of Frequent Pattern Mining Technique based on Landmark Window (랜드마크 윈도우 기반의 빈발 패턴 마이닝 기법의 분석 및 성능평가)

  • Pyun, Gwangbum;Yun, Unil
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.101-107
    • /
    • 2014
  • With the development of online service, recent forms of databases have been changed from static database structures to dynamic stream database structures. Previous data mining techniques have been used as tools of decision making such as establishment of marketing strategies and DNA analyses. However, the capability to analyze real-time data more quickly is necessary in the recent interesting areas such as sensor network, robotics, and artificial intelligence. Landmark window-based frequent pattern mining, one of the stream mining approaches, performs mining operations with respect to parts of databases or each transaction of them, instead of all the data. In this paper, we analyze and evaluate the techniques of the well-known landmark window-based frequent pattern mining algorithms, called Lossy counting and hMiner. When Lossy counting mines frequent patterns from a set of new transactions, it performs union operations between the previous and current mining results. hMiner, which is a state-of-the-art algorithm based on the landmark window model, conducts mining operations whenever a new transaction occurs. Since hMiner extracts frequent patterns as soon as a new transaction is entered, we can obtain the latest mining results reflecting real-time information. For this reason, such algorithms are also called online mining approaches. We evaluate and compare the performance of the primitive algorithm, Lossy counting and the latest one, hMiner. As the criteria of our performance analysis, we first consider algorithms' total runtime and average processing time per transaction. In addition, to compare the efficiency of storage structures between them, their maximum memory usage is also evaluated. Lastly, we show how stably the two algorithms conduct their mining works with respect to the databases that feature gradually increasing items. With respect to the evaluation results of mining time and transaction processing, hMiner has higher speed than that of Lossy counting. Since hMiner stores candidate frequent patterns in a hash method, it can directly access candidate frequent patterns. Meanwhile, Lossy counting stores them in a lattice manner; thus, it has to search for multiple nodes in order to access the candidate frequent patterns. On the other hand, hMiner shows worse performance than that of Lossy counting in terms of maximum memory usage. hMiner should have all of the information for candidate frequent patterns to store them to hash's buckets, while Lossy counting stores them, reducing their information by using the lattice method. Since the storage of Lossy counting can share items concurrently included in multiple patterns, its memory usage is more efficient than that of hMiner. However, hMiner presents better efficiency than that of Lossy counting with respect to scalability evaluation due to the following reasons. If the number of items is increased, shared items are decreased in contrast; thereby, Lossy counting's memory efficiency is weakened. Furthermore, if the number of transactions becomes higher, its pruning effect becomes worse. From the experimental results, we can determine that the landmark window-based frequent pattern mining algorithms are suitable for real-time systems although they require a significant amount of memory. Hence, we need to improve their data structures more efficiently in order to utilize them additionally in resource-constrained environments such as WSN(Wireless sensor network).

An Analysis of Movie Consumption Behavior from Transaction Cost Perspectives (거래비용관점에서 본 영화 소비행위 분석)

  • Park, Hye Youn;Kim, Jai Beom;Lee, Chang Jin
    • Review of Culture and Economy
    • /
    • v.20 no.3
    • /
    • pp.3-33
    • /
    • 2017
  • The present study analyzed movie consumption behavior from the perspective of transaction cost, taking into account the possible incurrence of additional costs in the process of consumers obtaining movie information to choose movies. Regression and multinomial logistic regression analyses were performed in the analysis by taking movie information and the individuals' social demographic characteristics as independent variables and the number and frequency of movies watched as dependent variables, using information from the "2015 movie consumer survey." The results showed that consumers considering elements such as "directors" and "online reviews" were found to be more active in movie consumption. The analysis of movie-watching frequency showed that the information considered when choosing a movie was different for high- and low-frequency movie viewers. Putting these factors together suggests that movie consumption can vary according to an individual's cultural capital, preferences, and their degree of movie information awareness. While existing studies have mostly analyzed the determinants of box office performance, the significance of the present study is its empirical analysis of individual movie information in terms of transaction cost. Based on the results above, it can be inferred that the cyclical structure of trading expenses influences movie consumption and, once preferences are formed through a certain level of consumption, the trading cost expenses decrease, which results in increasing consumption. Therefore, film makers need to establish and execute marketing strategies that appropriately use movie information so that consumers can reduce the trading costs necessary for movie watching.

A Grouping Method of Photographic Advertisement Information Based on the Efficient Combination of Features (특징의 효과적 병합에 의한 광고영상정보의 분류 기법)

  • Jeong, Jae-Kyong;Jeon, Byeung-Woo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.2
    • /
    • pp.66-77
    • /
    • 2011
  • We propose a framework for grouping photographic advertising images that employs a hierarchical indexing scheme based on efficient feature combinations. The study provides one specific application of effective tools for monitoring photographic advertising information through online and offline channels. Specifically, it develops a preprocessor for advertising image information tracking. We consider both global features that contain general information on the overall image and local features that are based on local image characteristics. The developed local features are invariant under image rotation and scale, the addition of noise, and change in illumination. Thus, they successfully achieve reliable matching between different views of a scene across affine transformations and exhibit high accuracy in the search for matched pairs of identical images. The method works with global features in advance to organize coarse clusters that consist of several image groups among the image data and then executes fine matching with local features within each cluster to construct elaborate clusters that are separated by identical image groups. In order to decrease the computational time, we apply a conventional clustering method to group images together that are similar in their global characteristics in order to overcome the drawback of excessive time for fine matching time by using local features between identical images.

A Uer Evaluation Study of Library Computer Systems by Specific Student User Groups In Selected Academic Libraries both in the Republic of Korea and in the States (국내외 대학도서관에서 사용되는 도서관전산화시스템의 이용자 평가연구 - 학생이용자 집단을 중심으로 -)

  • 박일종
    • Journal of Korean Library and Information Science Society
    • /
    • v.34 no.1
    • /
    • pp.423-446
    • /
    • 2003
  • Library and information science professionals have to grasp user's needs and make the best decisions when designing, acquiring, and managing library information systems. However, it is not easy for them to make the decision owing to the lack of an understanding of the characteristics of a specific user group in computer-based information systems in libraries. The aim of this study was to provide information on the characteristics and abilities of specific user groups such as male & female student groups, undergraduate & graduate ones, Sciences and Humanities majored ones etc. The actual OPAC systems were searched by specific student user groups in selected academic libraries in both Republic of Korea and the States for the purpose(Author, Title, and Subject search). Ouestionnaire was prepared and administered to Korean college students in the city of Taegu, Korea and adjacent area. Two hundred and seven usable questionnaires were obtained and analyzed. These were analyzed using descriptive, inferential statistics, and SPSS software. The major findings by data analysis of this study were described in chapters 4 and 5 of this paper in detail. Also, conclusions were drawn from the findings in this paper, and recommendations were proposed when designing, adopting, or managing a new system.

  • PDF

A Collision detection from division space for performance improvement of MMORPG game engine (MMORPG 게임엔진의 성능개선을 위한 분할공간에서의 충돌검출)

  • Lee, Sung-Ug
    • The KIPS Transactions:PartB
    • /
    • v.10B no.5
    • /
    • pp.567-574
    • /
    • 2003
  • Application field of third dimension graphic is becoming diversification by the fast development of hardware recently. Various theory of details technology necessary to design game such as 3D MMORPG (Massive Multi-play Online Role Flaying Game) that do with third dimension. Cyber city should be absorbed. It is the detection speed that this treatise is necessary in game engine design. 3D MMORPG game engine has much factor that influence to speed as well as rendering processing because it express huge third dimension city´s grate many building and individual fast effectively by real time. This treatise nay get concept about the collision in 3D MMORPG and detection speed elevation of game engine through improved detection method. Space division is need to process fast dynamically wide outside that is 3D MMORPG´s main detection target. 3D is constructed with tree construct individual that need collision using processing geometry dataset that is given through new graph. We may search individual that need in collision detection and improve the collision detection speed as using hierarchical bounding box that use it with detection volume. Octree that will use by division octree is used mainly to express rightly static object but this paper use limited OSP by limited space division structure to use this in dynamic environment. Limited OSP space use limited space with method that divide square to classify typically complicated 3D space´s object. Through this detection, this paper propose follow contents, first, this detection may judge collision detection at early time without doing all polygon´s collision examination. Second, this paper may improve detection efficiency of game engine through and then reduce detection time because detection time of bounding box´s collision detection.

Assessing the Damage: An Exploratory Examination of Electronic Word of Mouth (손해평고(损害评估): 대전자구비행소적탐색성고찰(对电子口碑行销的探索性考察))

  • Funches, Venessa Martin;Foxx, William;Park, Eun-Joo;Kim, Eun-Young
    • Journal of Global Scholars of Marketing Science
    • /
    • v.20 no.2
    • /
    • pp.188-198
    • /
    • 2010
  • This study attempts to examine the influence that negative WOM (NWOM) has in an online context. It specifically focuses on the impact of the service failure description and the perceived intention of the communication provider on consumer evaluations of firm competence, attitude toward the firm, positive word of mouth and behavioral intentions. Studies of communication persuasiveness focus on "who says what; to whom; in which channel; with what effect (Chiu 2007)." In this research study, we examine electronic web posting, particularly focusing on two aspects of "what": the level of service failure communicated and perceived intention of the individual posting. It stands to reason electronic NWOM that appears to be trying to damage a product’s or firm's reputation will be viewed as more biased and will thus be considered as less credible. According to attribution theory, people search for the causes of events especially those that are negative and unexpected (Weiner 2006). Hennig-Thurau and Walsh (2003) state "since the reader has only limited knowledge and trust of the author of an online articulation the quality of the contribution could be expected to serve as a potent moderator of the articulation-behavior relationship. We therefore posit the following hypotheses: H1. Subjects exposed to electronic NWOM describing a high level of service failure will provide lower scores on measures of (a) firm competence, (b) attitude toward the firm, (c) positive word of mouth, and (d) behavioral intention than will subjects exposed to electronic NWOM describing a low level of service failure. H2. Subjects exposed to electronic NWOM with a warning intent will provide lower scores on measures of (a) firm competence, (b) attitude toward the firm, (c) positive word of mouth, and (d) behavioral intention than will subjects exposed to electronic NWOM with a vengeful intent. H3. Level of service failure in electronic NWOM will interact with the perceived intention of the electronic NWOM, such that there will be a decrease in mean response on measures of (a) firm competence, (b) attitude toward the firm, (c) positive word of mouth, and (d) behavioral intention from electronic NWOM with a warning intent to a vengeful intent. The main study involved a2 (service failure severity) x2 (NWOM with warning versus vengeful intent) factorial experiment. Stimuli were presented to subjects online using a mock online web posting. The scenario described a service failure associated with non-acceptance of a gift card in a brick-and-mortar retail establishment. A national sample was recruited through an online research firm. A total of 113 subjects participated in the study. A total of 104 surveys were analyzed. The scenario was perceived to be realistic with 92.3% giving the scenario a greater than average response. Manipulations were satisfactory. Measures were pre-tested and validated. Items were analyzed and found reliable and valid. MANOVA results found the multivariate interaction was not significant, allowing our interpretation to proceed to the main effects. Significant main effects were found for post intent and service failure severity. The post intent main effect was attributable to attitude toward the firm, positive word of mouth and behavioral intention. The service failure severity main effect was attributable to all four dependent variables: firm competence, attitude toward the firm, positive word of mouth and behavioral intention. Specifically, firm competence for electronic NWOM describing high severity of service failure was lower than electronic NWOM describing low severity of service failure. Attitude toward the firm for electronic NWOM describing high severity of service failure was lower than electronic NWOM describing low severity of service failure. Positive word of mouth for electronic NWOM describing high severity of service failure was lower than electronic NWOM describing low severity of service failure. Behavioral intention for electronic NWOM describing high severity of service failure was lower for electronic NWOM describing low severity of service failure. Therefore, H1a, H1b, H1c and H1d were all supported. In addition, attitude toward the firm for electronic NWOM with a warning intent was lower than electronic NWOM with a vengeful intent. Positive word of mouth for electronic NWOM with a warning intent was lower than electronic NWOM with a vengeful intent. Behavioral intention for electronic NWOM with a warning intent was lower than electronic NWOM with a vengeful intent. Thus, H2b, H2c and H2d were supported. However, H2a was not supported though results were in the hypothesized direction. Otherwise, there was no significant multivariate service failure severity by post intent interaction, nor was there a significant univariate service failure severity by post intent interaction for any of the three hypothesized variables. Thus, H3 was not supported for any of the four hypothesized variables. This study has research and managerial implications. The findings of this study support prior research that service failure severity impacts consumer perceptions, attitude, positive word of mouth and behavioral intentions (Weun et al. 2004). Of further relevance, this response is evidenced in the online context, suggesting the need for firms to engage in serious focused service recovery efforts. With respect to perceived intention of electronic NWOM, the findings support prior research suggesting reader's attributions of the intentions of a source influence the strength of its impact on perceptions, attitude, positive word of mouth and behavioral intentions. The implication for managers suggests while consumers do find online communications to be credible and influential, not all communications are weighted the same. A benefit of electronic WOM, even when it may be potentially damaging, is it can be monitored for potential problems and additionally offers the possibility of redress.