The Journal of Asian Finance, Economics and Business
/
v.5
no.2
/
pp.139-149
/
2018
In the contemporary era of smart tourism, travelers face more accommodation options than ever before. The rapid expansions of alternative accommodation sector are partially owing to the growth of electronic commerce and the rise of online intermediary platforms. Online travel agencies serve as a critical distribution channel for tourism sectors, and the significance is further increased for small and micro entrepreneurs whose direct communication channels are scarce. Considering the holistic process of customer experience started with a third-party online intermediary, this study explores basic and extended attributes of small and medium-sized alternative accommodation where the comparative value is created. In order to achieve the objective, a research design was developed to synthesize the qualitative evidence. The synthesis encompasses both theoretical and practical perspectives, from a systematic review and opinions of academic professionals to an in-depth interview with an industry expert and the current practices of online travel agencies. This study suggests that the sources of value creation for alternative accommodation are not always consistent with those of the traditional. Accounting for the temporal and spatial dynamics in customer experience, the findings of this study provide insights on the comparative value of alternative accommodation, to both academic and industry audiences.
Journal of the Korea Society of Computer and Information
/
v.25
no.3
/
pp.207-218
/
2020
Recently, due to the increase of online reviews and the development of analysis technology, the interest and demand for online review analysis continues to increase. However, previous studies have not considered the emotions contained in each vocabulary may differ from one reviewer to another. Therefore, this study first classifies the customer group according to the customer's grade, and presents the result of analyzing the difference by performing review analysis for each customer group. We found that the price factor had a significant influence on the evaluation of products for customers with high ratings. On the contrary, in the case of low-grade customers, the degree of correspondence between the contents introduced in the mall and the actual product significantly influenced the evaluation of the product. We expect that the proposed methodology can be effectively used to establish differentiated marketing strategies by identifying factors that affect product evaluation by customer group.
Purpose: This study aims to analysis the difference by Michelin rating in customer satisfaction of restaurant listed in the Korea Michelin Guide. There are opinions that the Michelin Guide's rating system and evaluation criteria are somewhat ambiguous. Research design, data, and methodology: This study collected 145 actual online reviews published on TripAdvisor to examine how the effect of the content attributes of reviews on consumer satisfaction varies according to the Michelin grade. Based on this, two studies were conducted. Study 1 examined the effect of strong and weak positive reviews on consumer satisfaction according to the rating. Study 2 examined the effect of image information on consumer satisfaction. Results: The results revealed that the lower the Michelin rating, the more positive review had a significant effect on consumer satisfaction. The higher the rating, the more image information had an effect on consumer satisfaction. Expectations for Michelin three-star restaurants are higher than those of two-star restaurants, so customers are more likely to be used negatively when writing reviews. Conclusions: Accurate information on Michelin selection criteria should be delivered so as not to form high expectations and not to disappoint. For consumers to be satisfied with the name Michelin, the standards should be stricter.
The current e-CRM has been used in various types of e-business. Since the study of e-CRM for the promotion of online community sites are rarely studied, we attempt to analyze the case of broadcasting and suggest the promotion model focusing on the characteristic factors for a successive online community. That is, as a result of analyzing the online community cases for broadcasting, we know that the Internet community site of broadcasting has grown in the order of contents, community and then commerce. According to the case analysis, we have presented an e-CRM promotion model consisting of four phases: customer attraction, customer maintenance, customer enhancement, and customer activation. The e-CRM model suggested in this study may be used as a theoretical basis and practical guideline for further research in relation to e-CRM and e-business.
Generative AI, especially conversational AI like ChatGPT, has recently gained traction as a technological alternative for automating customer service. However, there is still a lack of research on whether current generative AI technologies can effectively replace traditional human managers in customer service automation, and whether they are advantageous in some situations and disadvantageous in others, depending on the conditions and environment. To answer the question, "Can generative AI replace human managers in customer service activities?", this study conducted experiments and surveys on customer online reviews of a food delivery platform. We applied the perspective of the elaboration likelihood model to generate hypotheses about whether there is a difference between positive and negative online reviews, and analyzed whether the hypotheses were supported. The analysis results indicate that for positive reviews, generative AI can effectively replace human managers. However, for negative reviews, complete replacement is challenging, and human managerial intervention is considered more desirable. The results of this study can provide valuable practical insights for organizations looking to automate customer service using generative AI.
With the development of modern society, not only have the Internet and e-commerce been progressed but they also made 'consumption patten' diverse. Despite the internet clothing market growth, there is critical a disadvantage, which is consumers is not able to wear the products presented via online pictures. Thus, pictures on the internet are the only information customers can get, which has caused consciousness on the importance of dealing with 'customer review'. In spite of the fact that 'customer review' has undeniably evolved to be one of customers' essential requisites, the research on this subject is very limited. Until now, the studies on the internet shopping consumers' behavior mostly has to do with the features of 'customer review' such as 'a sense of exaggeration', 'usability', 'duality', 'purity', 'professionalism', 'reliability', and the 'similarity', etc.) Therefore, this study categorizes the characteristics of online shopping reviews to 'the number of reviews', 'the article-length', 'the existence of photos', 'the rewards for reviews', 'the contents of the reviews' and 'the freshness of the reviews' and reviews the impact of an features of 'customers' reviews' affecting the internet shopping sales promotion. Moreover, it is to contribute to the marketing strategies of a shopping mall by analyzing consumers' 'purchasing satisfaction', 'the intention of repurchasing', and 'the factors of viral marketing'.
The concept of social media is top of the agenda for many business executives and decision makers, as well as consultants try to identify ways where companies can make profitable use of applications such as Netflix, Flixster. The social media is playing an increasingly important role as the information sources for customers making product choices etc. With the flourish of Web 2.0 technology, customer reviews are becoming more and more useful and important information resources for people to save their time and energy on purchasing products that they want. This paper proposes the Bayesian Probabilistic Classification algorithm to mine the social media review, and evaluates it by different splits and cross validation mechanism from the real data set. The explored study experimental results show the robustness and effectiveness of proposed approach for mining the social media review.
Customer reviews help potential customers make purchasing decisions. However, the prevalence of reviews on websites push the customer to sift through them and change the focus from a mere search to identifying which of the available reviews are valuable and useful for the purchasing decision at hand. To identify useful reviews, websites have developed different mechanisms to give customers options when evaluating existing reviews. Websites allow users to rate the usefulness of a customer review as helpful or not. Amazon.com uses a ratio-type helpfulness, while Yelp.com uses a count-type usefulness index. This usefulness index provides helpful reviews to future potential purchasers. This study investigated the effects of sentiment and readability on useful votes for customer reviews. Similar studies on the relationship between sentiment and readability have focused on the ratio-type usefulness index utilized by websites such as Amazon.com. In this study, Yelp.com's count-type usefulness index for restaurant reviews was used to investigate the relationship between sentiment/readability and usefulness votes. Yelp.com's online customer reviews for stores in the beverage and food categories were used for the analysis. In total, 170,294 reviews containing information on a store's reputation and popularity were used. The control variables were the review length, store reputation, and popularity; the independent variables were the sentiment and readability, while the dependent variable was the number of helpful votes. The review rating is the moderating variable for the review sentiment and readability. The length is the number of characters in a review. The popularity is the number of reviews for a store, and the reputation is the general average rating of all reviews for a store. The readability of a review was calculated with the Coleman-Liau index. The sentiment is a positivity score for the review as calculated by SentiWordNet. The review rating is a preference score selected from 1 to 5 (stars) by the review author. The dependent variable (i.e., usefulness votes) used in this study is a count variable. Therefore, the Poisson regression model, which is commonly used to account for the discrete and nonnegative nature of count data, was applied in the analyses. The increase in helpful votes was assumed to follow a Poisson distribution. Because the Poisson model assumes an equal mean and variance and the data were over-dispersed, a negative binomial distribution model that allows for over-dispersion of the count variable was used for the estimation. Zero-inflated negative binomial regression was used to model count variables with excessive zeros and over-dispersed count outcome variables. With this model, the excess zeros were assumed to be generated through a separate process from the count values and therefore should be modeled as independently as possible. The results showed that positive sentiment had a negative effect on gaining useful votes for positive reviews but no significant effect on negative reviews. Poor readability had a negative effect on gaining useful votes and was not moderated by the review star ratings. These findings yield considerable managerial implications. The results are helpful for online websites when analyzing their review guidelines and identifying useful reviews for their business. Based on this study, positive reviews are not necessarily helpful; therefore, restaurants should consider which type of positive review is helpful for their business. Second, this study is beneficial for businesses and website designers in creating review mechanisms to know which type of reviews to highlight on their websites and which type of reviews can be beneficial to the business. Moreover, this study highlights the review systems employed by websites to allow their customers to post rating reviews.
Journal of Information Technology Applications and Management
/
v.14
no.2
/
pp.129-149
/
2007
The purpose of this study is to examine the effect of relationship orientation factors on customer satisfaction and loyalty in Internet shopping malls. Based on previous exploratory work and a review of the literature of relationship marketing, six key factors of relationship orientation construct are identified: trust, bonding, communication. shared value. empathy and reciprocity. And a conceptual model is developed and seven research hypotheses are empirica1ly examined using structural equation modelling. The results show that bonding, shared value and reciprocity has statistically significant effect on the trust of online customers and trust has a positive influence on customer satisfaction and loyalty in Internet shopping malls. Theoretical. managerial and research implications are discussed.
Journal of the Korean Society of Clothing and Textiles
/
v.35
no.7
/
pp.761-774
/
2011
This study investigated the consumer review information considered important by consumers when making a purchase decision to buy apparel products online. Data were collected through focus group interviews. Eleven females in their 20s and 30s, who have extensive experience in reading consumer reviews posted on online apparel stores, participated in the study. The consumer review information considered important by participants is the information related to seven product attributes (size, fabric, design, color, sewing, price, and country of origin), seven benefits (functional, financial, esthetic, emotional, social, utilitarian benefits, and product value compared to price) of the apparel product and four store attributes (return/refund, delivery, reputation/credibility, and customer service). The findings from the study can serve as an important tool in developing survey questions in order to evaluate the quality of consumer review information and help online retailers plan methods to improve the quality of reviews.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.