• Title/Summary/Keyword: online customer review

Search Result 168, Processing Time 0.022 seconds

A Study on Improvement of Collaborative Filtering Based on Implicit User Feedback Using RFM Multidimensional Analysis (RFM 다차원 분석 기법을 활용한 암시적 사용자 피드백 기반 협업 필터링 개선 연구)

  • Lee, Jae-Seong;Kim, Jaeyoung;Kang, Byeongwook
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.139-161
    • /
    • 2019
  • The utilization of the e-commerce market has become a common life style in today. It has become important part to know where and how to make reasonable purchases of good quality products for customers. This change in purchase psychology tends to make it difficult for customers to make purchasing decisions in vast amounts of information. In this case, the recommendation system has the effect of reducing the cost of information retrieval and improving the satisfaction by analyzing the purchasing behavior of the customer. Amazon and Netflix are considered to be the well-known examples of sales marketing using the recommendation system. In the case of Amazon, 60% of the recommendation is made by purchasing goods, and 35% of the sales increase was achieved. Netflix, on the other hand, found that 75% of movie recommendations were made using services. This personalization technique is considered to be one of the key strategies for one-to-one marketing that can be useful in online markets where salespeople do not exist. Recommendation techniques that are mainly used in recommendation systems today include collaborative filtering and content-based filtering. Furthermore, hybrid techniques and association rules that use these techniques in combination are also being used in various fields. Of these, collaborative filtering recommendation techniques are the most popular today. Collaborative filtering is a method of recommending products preferred by neighbors who have similar preferences or purchasing behavior, based on the assumption that users who have exhibited similar tendencies in purchasing or evaluating products in the past will have a similar tendency to other products. However, most of the existed systems are recommended only within the same category of products such as books and movies. This is because the recommendation system estimates the purchase satisfaction about new item which have never been bought yet using customer's purchase rating points of a similar commodity based on the transaction data. In addition, there is a problem about the reliability of purchase ratings used in the recommendation system. Reliability of customer purchase ratings is causing serious problems. In particular, 'Compensatory Review' refers to the intentional manipulation of a customer purchase rating by a company intervention. In fact, Amazon has been hard-pressed for these "compassionate reviews" since 2016 and has worked hard to reduce false information and increase credibility. The survey showed that the average rating for products with 'Compensated Review' was higher than those without 'Compensation Review'. And it turns out that 'Compensatory Review' is about 12 times less likely to give the lowest rating, and about 4 times less likely to leave a critical opinion. As such, customer purchase ratings are full of various noises. This problem is directly related to the performance of recommendation systems aimed at maximizing profits by attracting highly satisfied customers in most e-commerce transactions. In this study, we propose the possibility of using new indicators that can objectively substitute existing customer 's purchase ratings by using RFM multi-dimensional analysis technique to solve a series of problems. RFM multi-dimensional analysis technique is the most widely used analytical method in customer relationship management marketing(CRM), and is a data analysis method for selecting customers who are likely to purchase goods. As a result of verifying the actual purchase history data using the relevant index, the accuracy was as high as about 55%. This is a result of recommending a total of 4,386 different types of products that have never been bought before, thus the verification result means relatively high accuracy and utilization value. And this study suggests the possibility of general recommendation system that can be applied to various offline product data. If additional data is acquired in the future, the accuracy of the proposed recommendation system can be improved.

The Effects of Service Factors on Customer's Consumption Value and Revisit Intention in Multiplex Cinema Service: Focusing on Multiplex Cinema Service in Korea and Vietnam (멀티플렉스관의 서비스 요인이 소비 가치와 재방문 의도에 미치는 영향: 베트남과 한국 멀티플렉스관 비교)

  • Nguyen, Thi Hanh Dung;Park, Jinseo;Chae, Myung-Su
    • International Area Studies Review
    • /
    • v.21 no.2
    • /
    • pp.197-218
    • /
    • 2017
  • The research ais to examine the relationship among service factors, customer's consumption value and revisit intentions in the multiplex cinema industry focusing on multiplex cinema service in Korea and Vietnam. This research also aims to compare the influence of service factors on consumption values and revisit intention between customers in Vietnam and Korea. Data using for this research were collected in Ho Chi Minh, Vietnam and Seoul, Korea through both offline and online survey. Research findings suggest that service factors significantly influence utilitarian values and hedonic values, then both hedonic and utilitarian value have a significant influence on customer's revisit intention in multiplex cinema. Specifically, utilitarian value shows a greater influence on revisit intention in Korea whereas hedonic value shows a greater influence on revisit intention in Vietnam.

A Study on Relationship between the Relationship Benefit, Customer Satisfaction and Loyalty of Internet Shopping Malls -Focused on Comparison between Specialized Shopping Mall and General Shopping Mall- Kim (인터넷 쇼핑몰의 관계혜택과 고객만족, 애호도와의 관계에 관한 연구 -전문쇼핑몰과 종합쇼핑몰의 비교를 중심으로-)

  • Kim, Yu-Kyung
    • Management & Information Systems Review
    • /
    • v.32 no.4
    • /
    • pp.155-187
    • /
    • 2013
  • This study is the one trying to examine the relationship between relationship benefit, customer satisfaction and customer loyalty perceived by the internet shopping mall customers. It will try to extend and apply the concept of relationship benefit mainly dealt with in the existing study to the online environment The specific purposes of study are presented as follows. First, this study will present five dimensions of relationship benefit levels as customization benefit, information benefit, psychological benefit, social benefit and economic benefit to clarify their relationship with customer satisfaction. Second, the relationship between customer satisfaction and loyalty will be examined. Third, a comparative analysis will be performed according to the type of internet shopping mall, in other words, between general shopping mall and specialized shopping mall. As a result, the remaining relationship benefit dimensions (customization benefit, psychological benefit, social benefit and economic benefit) except for information benefit among the five types of relationship benefit levels perceived by internet shopping mall customers have been shown as having significant positive effect on customer satisfaction. Finally, as a result of verifying the result on the difference between specialized shopping mall and general shopping mall, the difference between each group was shown as not being statistically significant. However, as a result of applying the study model by classifying into specialized shopping mall and general shopping mall, only the information benefit was shown as not having significant positive effect which is identical to the overall result.

  • PDF

Prediction of Customer Satisfaction Using RFE-SHAP Feature Selection Method (RFE-SHAP을 활용한 온라인 리뷰를 통한 고객 만족도 예측)

  • Olga Chernyaeva;Taeho Hong
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.325-345
    • /
    • 2023
  • In the rapidly evolving domain of e-commerce, our study presents a cohesive approach to enhance customer satisfaction prediction from online reviews, aligning methodological innovation with practical insights. We integrate the RFE-SHAP feature selection with LDA topic modeling to streamline predictive analytics in e-commerce. This integration facilitates the identification of key features-specifically, narrowing down from an initial set of 28 to an optimal subset of 14 features for the Random Forest algorithm. Our approach strategically mitigates the common issue of overfitting in models with an excess of features, leading to an improved accuracy rate of 84% in our Random Forest model. Central to our analysis is the understanding that certain aspects in review content, such as quality, fit, and durability, play a pivotal role in influencing customer satisfaction, especially in the clothing sector. We delve into explaining how each of these selected features impacts customer satisfaction, providing a comprehensive view of the elements most appreciated by customers. Our research makes significant contributions in two key areas. First, it enhances predictive modeling within the realm of e-commerce analytics by introducing a streamlined, feature-centric approach. This refinement in methodology not only bolsters the accuracy of customer satisfaction predictions but also sets a new standard for handling feature selection in predictive models. Second, the study provides actionable insights for e-commerce platforms, especially those in the clothing sector. By highlighting which aspects of customer reviews-like quality, fit, and durability-most influence satisfaction, we offer a strategic direction for businesses to tailor their products and services.

Comparisons of Airline Service Quality Using Social Network Analysis (소셜 네트워크 분석을 활용한 항공서비스 품질 비교)

  • Park, Ju-Hyeon;Lee, Hyun Cheol
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.3
    • /
    • pp.116-130
    • /
    • 2019
  • This study investigates passenger-authored online reviews of airline services using social network analysis to compare the differences in customer perceptions between full service carriers (FSCs) and low cost carriers (LCCs). While deriving words with high frequency and weight matrix based on the text analysis for FSCs and LCCs respectively, we analyze the semantic network (betweenness centrality, eigenvector centrality, degree centrality) to compare the degree of connection between words in online reviews of each airline types using the social network analysis. Then we compare the words with high frequency and the connection degree to gauge their influences in the network. Moreover, we group eight clusters for FSCs and LCCs using the convergence of iterated correlations (CONCOR) analysis. Using the resultant clusters, we match the clusters to dimensions of two types of service quality models ($Gr{\ddot{o}}nroos$, Brady & Cronin (B&C)) to compare the airline service quality and determine which model fits better. From the semantic network analysis, FSCs are mainly related to inflight service words and LCCs are primarily related to the ground service words. The CONCOR analysis reveals that FSCs are mainly related to the dimension of outcome quality in $Gr{\ddot{o}}nroos$ model, but evenly distributed to the dimensions in B&C model. On the other hand, LCCs are primarily related to the dimensions of process quality in both $Gr{\ddot{o}}nroos$ and B&C models. From the CONCOR analysis, we also observe that B&C model fits better than $Gr{\ddot{o}}nroos$ model for the airline service because the former model can capture passenger perceptions more specifically than the latter model can.

Personification of On-line Shopping Mall -Focusing on the Social Presence- (온라인 쇼핑몰의 의인화 전략 -사회적 실재감을 중심으로-)

  • Park, Ju-Sik
    • Management & Information Systems Review
    • /
    • v.31 no.2
    • /
    • pp.143-172
    • /
    • 2012
  • While e-commerce market(B2C) grows rapidly, many experts argue that EC(B2C) transactions have not reached its full potential. A notable difference between online and offline consumer markets that is suppressing the growth of EC(B2C) is the decreased presence of human and social elements in the online shopping environments. Generally online shopping lacks human warmth and sociability. In this study, social presence in online shopping mall was proposed as a substitute for face-to-face social interaction in the traditional commerce and author explored what variables affect social presence(human warmth and sociability) on online shopping malls and how human warmth and sociability can influence on online store loyalty. To achieve research objectives, we reviewed literatures related with marketing, psychology and communication research areas. Based on literature review, we proposed a research model on the online shopping mall. To examine the proposed research model, we gathered data by using a self-report questionnaire. Respondents consists of online shoppers with at least five or more times of purchase experience in online shopping malls. Because social presence is a feeling which needs frequent contacts with malls to experience, respondents must have enough purchase experiences. The empirical results are as follows : First, shopping mall's customization efforts influence perceived social presence on the mall significantly. Second, shopping mall's responsiveness influences perceived social presence significantly. Third, perceived activity of community of online shopping mall influences perceived social presence significantly. Mall managers have to activate their customer community to reinforce social presence, resulting in trust building. Finally, perceived social presence influences trust and enjoyment on the mall significantly. And then trust and enjoyment on the mall affect store loyalty significantly. From these findings it can be inferred that perceived social presence appears determinant which is critical to the formation of core variables(trust and loyalty) in existing online shopping papers.

  • PDF

Understanding the Evaluation of Quality of Experience for Metaverse Services Utilizing Text Mining: A Case Study on Roblox (텍스트마이닝을 활용한 메타버스 서비스의 경험 품질 평가의 이해: 로블록스 사례 연구)

  • Minjun Kim
    • Journal of Service Research and Studies
    • /
    • v.13 no.4
    • /
    • pp.160-172
    • /
    • 2023
  • The metaverse, derived from the fusion of "meta" and "universe," encompasses a three-dimensional virtual realm where avatars actively participate in a range of political, economic, social, and cultural activities. With the recent development of the metaverse, the traditional way of experiencing services is changing. While existing studies have mainly focused on the technological advancements of metaverse services (e.g., scope of technological enablers, application areas of technologies), recent studies are focusing on evaluating the quality of experience (QoE) of metaverse services from a customer perspective. This is because understanding and analyzing service characteristics that determine QoE from a customer perspective is essential for designing successful metaverse services. However, relatively few studies have explored the customer-oriented approach for QoE evaluation thus far. This study conducted an online review analysis using text mining to overcome this limitation. In particular, this study analyzed 227,332 online reviews of the Roblox service, known as a representative metaverse service, and identified points for improving the Roblox service based on the analysis results. As a result of the study, nine service features that can be used for QoE evaluation of metaverse services were derived, and the importance of each feature was estimated through relationship analysis with service satisfaction. The importance estimation results identified the "co-experience" feature as the most important. These findings provide valuable insights and implications for service companies to identify their strengths and weaknesses, and provide useful insights to gain an advantage in the changing metaverse service environment.

A Study of the Beauty Commerce Customer Segment Classification and Application based on Machine Learning: Focusing on Untact Service (머신러닝 기반의 뷰티 커머스 고객 세그먼트 분류 및 활용 방안: 언택트 서비스 중심으로)

  • Sang-Hyeak Yoon;Yoon-Jin Choi;So-Hyun Lee;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.22 no.4
    • /
    • pp.75-92
    • /
    • 2020
  • As population and generation structures change, more and more customers tend to avoid facing relation due to the development of information technology and spread of smart phones. This phenomenon consists with efficiency and immediacy, which are the consumption patterns of modern customers who are used to information technology, so offline network-oriented distribution companies actively try to switch their sales and services to untact patterns. Recently, untact services are boosted in various fields, but beauty products are not easy to be recommended through untact services due to many options depending on skin types and conditions. There have been many studies on recommendations and development of recommendation systems in the online beauty field, but most of them are the ones that develop recommendation algorithm using survey or social data. In other words, there were not enough studies that classify segments based on user information such as skin types and product preference. Therefore, this study classifies customer segments using machine learning technique K-prototypesalgorithm based on customer information and search log data of mobile application, which is one of untact services in the beauty field, based on which, untact marketing strategy is suggested. This study expands the scope of the previous literature by classifying customer segments using the machine learning technique. This study is practically meaningful in that it classifies customer segments by reflecting new consumption trend of untact service, and based on this, it suggests a specific plan that can be used in untact services of the beauty field.

Increasing Accuracy of Classifying Useful Reviews by Removing Neutral Terms (중립도 기반 선택적 단어 제거를 통한 유용 리뷰 분류 정확도 향상 방안)

  • Lee, Minsik;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.129-142
    • /
    • 2016
  • Customer product reviews have become one of the important factors for purchase decision makings. Customers believe that reviews written by others who have already had an experience with the product offer more reliable information than that provided by sellers. However, there are too many products and reviews, the advantage of e-commerce can be overwhelmed by increasing search costs. Reading all of the reviews to find out the pros and cons of a certain product can be exhausting. To help users find the most useful information about products without much difficulty, e-commerce companies try to provide various ways for customers to write and rate product reviews. To assist potential customers, online stores have devised various ways to provide useful customer reviews. Different methods have been developed to classify and recommend useful reviews to customers, primarily using feedback provided by customers about the helpfulness of reviews. Most shopping websites provide customer reviews and offer the following information: the average preference of a product, the number of customers who have participated in preference voting, and preference distribution. Most information on the helpfulness of product reviews is collected through a voting system. Amazon.com asks customers whether a review on a certain product is helpful, and it places the most helpful favorable and the most helpful critical review at the top of the list of product reviews. Some companies also predict the usefulness of a review based on certain attributes including length, author(s), and the words used, publishing only reviews that are likely to be useful. Text mining approaches have been used for classifying useful reviews in advance. To apply a text mining approach based on all reviews for a product, we need to build a term-document matrix. We have to extract all words from reviews and build a matrix with the number of occurrences of a term in a review. Since there are many reviews, the size of term-document matrix is so large. It caused difficulties to apply text mining algorithms with the large term-document matrix. Thus, researchers need to delete some terms in terms of sparsity since sparse words have little effects on classifications or predictions. The purpose of this study is to suggest a better way of building term-document matrix by deleting useless terms for review classification. In this study, we propose neutrality index to select words to be deleted. Many words still appear in both classifications - useful and not useful - and these words have little or negative effects on classification performances. Thus, we defined these words as neutral terms and deleted neutral terms which are appeared in both classifications similarly. After deleting sparse words, we selected words to be deleted in terms of neutrality. We tested our approach with Amazon.com's review data from five different product categories: Cellphones & Accessories, Movies & TV program, Automotive, CDs & Vinyl, Clothing, Shoes & Jewelry. We used reviews which got greater than four votes by users and 60% of the ratio of useful votes among total votes is the threshold to classify useful and not-useful reviews. We randomly selected 1,500 useful reviews and 1,500 not-useful reviews for each product category. And then we applied Information Gain and Support Vector Machine algorithms to classify the reviews and compared the classification performances in terms of precision, recall, and F-measure. Though the performances vary according to product categories and data sets, deleting terms with sparsity and neutrality showed the best performances in terms of F-measure for the two classification algorithms. However, deleting terms with sparsity only showed the best performances in terms of Recall for Information Gain and using all terms showed the best performances in terms of precision for SVM. Thus, it needs to be careful for selecting term deleting methods and classification algorithms based on data sets.

The Impact of Service Quality Signals on the Success of Online Food Delivery Services on O2O Platforms (O2O 플랫폼 내 서비스 품질 신호가 온라인 음식 배달 서비스 성공에 미치는 영향)

  • Mingi Song;Seunghun Lee;Gunwoong Lee
    • Information Systems Review
    • /
    • v.24 no.3
    • /
    • pp.43-68
    • /
    • 2022
  • With the growing demand for online food delivery (OFD) services via Online to Offline (O2O) platforms, it is required for academic researchers to identify the success factors of OFD businesses. In line with this, this research examines the impact of the core service attributes of a restaurant (hygiene, interactivity, trust,and popularity) on business success in the OFD platform context from the perspective of information asymmetry. Furthermore, the moderating effects of hygiene factor between the core service attributes and the success of restaurants are evaluated. We utilize 1,146 restaurants registered on the largest OFD platform in Korea. The results of this study demonstrate that hygiene (certification), trust (franchise), popularity (favorite) factors have positive impacts on the success of OFD businesses. Moreover, we find that franchise restaurants with high response rates to customer reviews and inquiries achieve higher sales when they have hygiene certifications than those without the certification do. The key findings bear significant contributions to prior literature by empirically substantiating the pivotal role of service quality signals in fostering restaurant success on the OFD platforms. In addition, this study provides business implications for restaurants in O2O platform.