• Title/Summary/Keyword: one-to-one shortest path

Search Result 150, Processing Time 0.025 seconds

Linear Algorithm for Finding a Shortest Watchman Route with Minimum Links in Monotone Polygons (단조다각형에서 최소 개수의 링크를 가진 최단 경비원경로를 구하는 선형 알고리즘)

  • Ryu, Sang-Ryul
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.11
    • /
    • pp.1437-1445
    • /
    • 1999
  • n개의 꼭지점을 가진 단조(monotone) 다각형은 2차원 평면상의 임의의 선분에 단조 적인 2개의 체인으로 구성된다. 단조 다각형의 내부를 경로 상에서 모두 감시할 수 있는 최소 링크를 가진 경비원 경로(watchman route with minimum links)는 최소 개수의 선분으로 구성된 경로로서 하나 이상 존재할 수 있다. 본 논문에서는 단조 다각형의 최소 링크를 가진 경비원 경로들 중에서 최단 경비원 경로를 구하는 O(n) 시간의 알고리즘을 제시한다.Abstract A monotone polygon consists of n vertices and is a union of two monotone chains with respect to some line segment in the plane. A watchman route with minimum-links is a polygonal path such that each point in the interior of the polygon can be visible from at least one point along the route. There may be more than one watchman route with minimum links for given monotone polygon. In this paper, we present an algorithm with O(n) time that finds a shortest watchman route among the watchman routes with minimum links in a monotone polygon.

Optimal Path Planning Using Critical Points

  • Lee, Jin-Sun;Choi, Chang-Hyuk;Song, Jae-Bok;Chung, Woo-Jin;Kim, Mun-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.131.4-131
    • /
    • 2001
  • A lot of path planning algorithms have been developed to find the collision-free path with minimum cost. But most of them require complicated computations. In this paper, a thinning method, which is one of the image processing schemes, was adopted to simplify the path planning procedure. In addition, critical points are used to find the shortest-distance path among all possible paths from the start to the goal point. Since the critical points contain the information on the neighboring paths, a new path can be quickly obtained on the map even when the start and goal points change. To investigate the validity of the proposed algorithm, various simulations have been performed for the environment where the obstacles with arbitrary shapes exist. It is shown that the optimal paths can be found with relative easiness.

  • PDF

Network Efficient Multi-metric Routing Algorithm for QoS Requiring Application (QoS 응용 서비스를 위한 효율적인 다중 메트릭 라우팅 방안)

  • 전한얼;김성대;이재용;김동연;김영준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.11C
    • /
    • pp.1055-1063
    • /
    • 2002
  • In this paper, we have studied path selection problem using multiple metric. Current Internet selects a path using only one metric. The path selected by one metric is a best-effort service that can satisfy one requirements. In order to satisfy a call with various Qualify-of-Service(QoS) requirements, the path must satisfy multiple constraints. In many cases, path selection is NP-complete. The proposed algorithm is widest-least cost routing algorithm that selects a path based on cost metric which is basically a delay metric influenced by the network status. The proposed algorithm is a multiple metric path selection algorithm that has traffic distribution ability to select shortest path when network load is light and move traffic to other alternate path when the link load is high. We have compared the results with other routing algorithms.

A Study of Unmanned Aerial Vehicle Path Planning using Reinforcement Learning

  • Kim, Cheong Ghil
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.1
    • /
    • pp.88-92
    • /
    • 2018
  • Currently drone industry has become one of the fast growing markets and the technology for unmanned aerial vehicles are expected to continue to develop at a rapid rate. Especially small unmanned aerial vehicle systems have been designed and utilized for the various field with their own specific purposes. In these fields the path planning problem to find the shortest path between two oriented points is important. In this paper we introduce a path planning strategy for an autonomous flight of unmanned aerial vehicles through reinforcement learning with self-positioning technique. We perform Q-learning algorithm, a kind of reinforcement learning algorithm. At the same time, multi sensors of acceleraion sensor, gyro sensor, and magnetic are used to estimate the position. For the functional evaluation, the proposed method was simulated with virtual UAV environment and visualized the results. The flight history was based on a PX4 based drones system equipped with a smartphone.

A Point-to-Point Shortest Path Algorithm Based on Level Node Selection (레벨 노드 선택 기반 점대점 최단경로 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.133-140
    • /
    • 2012
  • This paper suggests an algorithm that can shorten the complexity $O(n^2)$ of Dijkstra algorithm that is applied to the shortest path searching in real-time GPS Navigation System into an up-to-date O(n). Dijkstra algorithm manipulates the distance of the minimum length path by visiting all the nodes from the starting node. Hence, it has one disadvantage of not being able to provide the information on the shortest path every second, in a city that consists of sophisticated roads, since it has to execute number of node minus 1. The suggested algorithm, firstly, runs by means of organizing the set of out-neighbourhood nodes at each level of the tree, and root node for departure node. It also uses a method of manipulating the distance of the minimum path of all out-neighborhoods and interior of the out-neighborhoods. On applying the suggested algorithm to two sophisticated graphs consisted of bi-direction and uni-direction, we have succeeded to obtain the distance of the minimum length path, just as same as Dijkstra algorithm. In addition, it has an effect of shortening the time taken 4 times from number of node minus1 to number of level minus 1. The satisfaction of the drivers can be increased by providing the information on shortest path of detour, every second, when occurs any rush hour or any traffic congestion due to car accident, by applying this suggested algorithm to the real-time GPS system.

Distance Transform Path Planning using DEM and Obstacle Map (DEM과 장애물 지도를 이용한 거리변환 경로계획)

  • Choe, Tok-Son;Jee, Tae-Young;Kim, Jun;Park, Yong-Woon;Ryu, Chul-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.92-94
    • /
    • 2005
  • Unmanned ground vehicles(UGVs) are expected to play a key role in the future army. These UGVs would be used for weapons platforms. logistics carriers, reconnaissance, surveillance, and target acquisition in the rough terrain. Most of path planning methodologies for UGVs offer an optimal or sub-optimal shortest-path in a 20 space. However, those methodologies do not consider increment and reduction effects of relative distance when a UGV climbs up or goes down in the slope of rough terrain. In this paper, we propose a novel path planning methodology using the modified distance transform algorithm. Our proposed path planning methodology employs two kinds of map. One is binary obstacle map. The other is the DEM. With these two maps, the modified distance transform algorithm in which distance between cells is increased or decreased by weighting function of slope is suggested. The proposed methodology is verified by various simulations on the randomly generated DEM and obstacle map.

  • PDF

Intelligent Optimal Route Planning Based on Context Awareness (상황인식 기반 지능형 최적 경로계획)

  • Lee, Hyun-Jung;Chang, Yong-Sik
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.117-137
    • /
    • 2009
  • Recently, intelligent traffic information systems have enabled people to forecast traffic conditions before hitting the road. These convenient systems operate on the basis of data reflecting current road and traffic conditions as well as distance-based data between locations. Thanks to the rapid development of ubiquitous computing, tremendous context data have become readily available making vehicle route planning easier than ever. Previous research in relation to optimization of vehicle route planning merely focused on finding the optimal distance between locations. Contexts reflecting the road and traffic conditions were then not seriously treated as a way to resolve the optimal routing problems based on distance-based route planning, because this kind of information does not have much significant impact on traffic routing until a a complex traffic situation arises. Further, it was also not easy to take into full account the traffic contexts for resolving optimal routing problems because predicting the dynamic traffic situations was regarded a daunting task. However, with rapid increase in traffic complexity the importance of developing contexts reflecting data related to moving costs has emerged. Hence, this research proposes a framework designed to resolve an optimal route planning problem by taking full account of additional moving cost such as road traffic cost and weather cost, among others. Recent technological development particularly in the ubiquitous computing environment has facilitated the collection of such data. This framework is based on the contexts of time, traffic, and environment, which addresses the following issues. First, we clarify and classify the diverse contexts that affect a vehicle's velocity and estimates the optimization of moving cost based on dynamic programming that accounts for the context cost according to the variance of contexts. Second, the velocity reduction rate is applied to find the optimal route (shortest path) using the context data on the current traffic condition. The velocity reduction rate infers to the degree of possible velocity including moving vehicles' considerable road and traffic contexts, indicating the statistical or experimental data. Knowledge generated in this papercan be referenced by several organizations which deal with road and traffic data. Third, in experimentation, we evaluate the effectiveness of the proposed context-based optimal route (shortest path) between locations by comparing it to the previously used distance-based shortest path. A vehicles' optimal route might change due to its diverse velocity caused by unexpected but potential dynamic situations depending on the road condition. This study includes such context variables as 'road congestion', 'work', 'accident', and 'weather' which can alter the traffic condition. The contexts can affect moving vehicle's velocity on the road. Since these context variables except for 'weather' are related to road conditions, relevant data were provided by the Korea Expressway Corporation. The 'weather'-related data were attained from the Korea Meteorological Administration. The aware contexts are classified contexts causing reduction of vehicles' velocity which determines the velocity reduction rate. To find the optimal route (shortest path), we introduced the velocity reduction rate in the context for calculating a vehicle's velocity reflecting composite contexts when one event synchronizes with another. We then proposed a context-based optimal route (shortest path) algorithm based on the dynamic programming. The algorithm is composed of three steps. In the first initialization step, departure and destination locations are given, and the path step is initialized as 0. In the second step, moving costs including composite contexts into account between locations on path are estimated using the velocity reduction rate by context as increasing path steps. In the third step, the optimal route (shortest path) is retrieved through back-tracking. In the provided research model, we designed a framework to account for context awareness, moving cost estimation (taking both composite and single contexts into account), and optimal route (shortest path) algorithm (based on dynamic programming). Through illustrative experimentation using the Wilcoxon signed rank test, we proved that context-based route planning is much more effective than distance-based route planning., In addition, we found that the optimal solution (shortest paths) through the distance-based route planning might not be optimized in real situation because road condition is very dynamic and unpredictable while affecting most vehicles' moving costs. For further study, while more information is needed for a more accurate estimation of moving vehicles' costs, this study still stands viable in the applications to reduce moving costs by effective route planning. For instance, it could be applied to deliverers' decision making to enhance their decision satisfaction when they meet unpredictable dynamic situations in moving vehicles on the road. Overall, we conclude that taking into account the contexts as a part of costs is a meaningful and sensible approach to in resolving the optimal route problem.

EZR: Expansive Search Zone Routing Protocol for Ship Ad Hoc Networks (선박 애드 혹 네트워크를 위한 확장탐색구역 경로배정 프로토콜)

  • Son, Joo-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1269-1277
    • /
    • 2008
  • Ships at sea cannot exchange data among them easily so far. Basically voice-oriented communication systems are the main methods, some of them utilize the HF radio systems at lower bit rates, and for higher bit rates, the Inmarsat or VSAT are adopted. None of them are used widely because of lower qualities and higher costs. There exist many technical and economical limits to have the Internet service just like on land such as the WWW service. In order to achieve the improved transmission rates of the maritime communication networks at farther sea, MANET(Mobile Ad Hoc Network) is one of the most practical models. In this paper, a new routing protocol named EZR (Expansive Search Zone Routing Protocol) is proposed, which is based on SANET (Ship Ad Hoc Network) model that has some different features from MANET and VANET (Vehicular Ad Hoc Network). The search zone for the shortest path is firstly found by EZR. If no path is searched in the zone, the zone is expanded according to the rule of EZR. The zone-expanding and path-searching procedures are repeated until the path is found out. The performance of EZR is evaluated and compared with LAR protocol which is one of the most typical routing protocols based on geographical information. The simulated results show that EZR is much better than LAR at sea environments in terms of routing success rate, route optimality, and a single index of performance combined the previous two metrics.

Complete Time Algorithm for Stadium Construction Scheduling Problem

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.9
    • /
    • pp.81-86
    • /
    • 2015
  • This paper suggests heuristic algorithm with linear time complexity to decide the normal and optimal point at minimum loss/maximum profit maximum shortest scheduling problem with additional loss cost and bonus profit cost. This algorithm computes only the earliest ending time for each node. Therefore, this algorithm can be get the critical path and project duration within O(n) time complexity and reduces the five steps of critical path method to one step. The proposed algorithm can be show the result more visually than linear programming and critical path method. For real experimental data, the proposed algorithm obtains the same solution as linear programming more quickly.

Development of the Shortest Path Algorithm for Multiple Waypoints Based on Clustering for Automatic Book Management in Libraries (도서관의 자동 도서 관리를 위한 군집화 기반 다중경유지의 최단 경로 알고리즘 개발)

  • Kang, Hyo Jung;Jeon, Eun Joo;Park, Chan Jung
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.1
    • /
    • pp.541-551
    • /
    • 2021
  • Among the numerous duties of a librarian in a library, the work of arranging books is a job that the librarian has to do one by one. Thus, the cost of labor and time is large. In order to solve this problem, the interest in book-arranging robots based on artificial intelligence has recently increased. In this paper, we propose the K-ACO algorithm, which is the shortest path algorithm for multi-stops that can be applied to the library book arrangement robots. The proposed K-ACO algorithm assumes multiple robots rather than one robot. In addition, the K-ACO improves the ANT algorithm to create K clusters and provides the shortest path for each cluster. In this paper, the performance analysis of the proposed algorithm was carried out from the perspective of book arrangement time. The proposed algorithm, the K-ACO algorithm, was applied to a university library and compared with the current book arrangement algorithm. Through the simulation, we found that the proposed algorithm can allocate fairly, without biasing the work of arranging books, and ultimately significantly reduce the time to complete the entire work. Through the results of this study, we expect to improve quality services in the library by reducing the labor and time costs required for arranging books.