• Title/Summary/Keyword: one-sided block Jacobi

Search Result 1, Processing Time 0.016 seconds

Exploration of an Optimal Two-Dimensional Multi-Core System for Singular Value Decomposition (특이치 분해를 위한 최적의 2차원 멀티코어 시스템 탐색)

  • Park, Yong-Hun;Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.9
    • /
    • pp.21-31
    • /
    • 2014
  • Singular value decomposition (SVD) has been widely used to identify unique features from a data set in various fields. However, a complex matrix calculation of SVD requires tremendous computation time. This paper improves the performance of a representative one-sided block Jacoby algorithm using a two-dimensional (2D) multi-core system. In addition, this paper explores an optimal multi-core system by varying the number of processing elements in the 2D multi-core system with the same 400MHz clock frequency and TSMC 28nm technology for each matrix-based one-sided block Jacoby algorithm ($128{\times}128$, $64{\times}64$, $32{\times}32$, $16{\times}16$). Moreover, this paper demonstrates the potential of the 2D multi-core system for the one-sided block Jacoby algorithm by comparing the performance of the multi-core system with a commercial high-performance graphics processing unit (GPU).