• Title/Summary/Keyword: one-hand compression

Search Result 57, Processing Time 0.021 seconds

A comparative analysis of the efficacy of tiny child cardiopulmonary resuscitation (CPR) by chest compression methods (가슴압박 방법에 따른 소아 심폐소생술의 효율성 비교)

  • Yong-Joon Kim;So-Yeon An;Seung-Eun Han;Kyoung-Youl Lee
    • The Korean Journal of Emergency Medical Services
    • /
    • v.28 no.2
    • /
    • pp.99-108
    • /
    • 2024
  • Purpose: This study aimed to compare the effectiveness of one-hand compression method (one-hand) and two-thumb compression methods (two-thumb) using a 3-year-old pediatric mannequin. Methods: Participants in the experiment were randomly assigned to 21 people with one hand and 21 people with two thumbs, who had completed a basic life support training course. The mannequin used a few junior QCPR manikis (Laerdal, Norway), based on an age of 3. The study followed the guidelines for two-rescuer pediatric CPR, performing chest compressions and ventilations in a 15:2 ratio for 5 cycles, 10 minutes. The chest compression number, depth, speed rate, and recoil rate were measured after 1, 3, and 5 cycles, respectively. Data were analyzed using SPSS 23.0. Results: Comparing the efficiency of chest compressions performed during 1, 3, and 5 cycles, the depth of chest compressions was 40.84±3.10 mm for the two thumbs and 51.48±4.79 mm for the one-hand, which was significantly different (p<.001). According to pediatric CPR guidelines, the frequency corresponding to the compression depth range of 40.00-50.00 mm was statistically higher at 57.1% (12 people) of two thumb than at 23.8% (5 people) of one hand (p<.001). Conclusion: While the current guidelines recommend one- or two-thumb encircling hand compressions for larger children, the use of one- or two-handed wrapped thumb compressions should be considered for smaller children, depending on the rescuer's judgment, when distinguishing between a child and an infant is difficult.

The effect of welding on the strength of aluminium stiffened plates subject to combined uniaxial compression and lateral pressure

  • Pedram, Masoud;Khedmati, Mohammad Reza
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.39-59
    • /
    • 2014
  • Nowadays aluminum stiffened plates are one of the major constituents of the marine structures, especially high-speed vessels. On one hand, these structures are subject to various forms of loading in the harsh sea environment, like hydrostatic lateral pressures and in-plane compression. On the other hand, fusion welding is often used to assemble those panels. The common marine aluminum alloys in the both 5,000 and 6,000 series, however, lose a remarkable portion of their load carrying capacity due to welding. This paper presents the results of sophisticated finite-element investigations considering both geometrical and mechanical imperfections. The tested models were those proposed by the ultimate strength committee of $15^{th}$ ISSC. The presented data illuminates the effects of welding on the strength of aluminum plates under above-mentioned load conditions.

Effect of Mold Temperature on the Separation and the Orientation during Compression Molding of Fiber-Reinforced Polymeric Composites (섬유강화 고분자 복합재료의 압축성형에 있어서 분리 ${\cdot}$ 배향에 미치는 금형온도의 영향)

  • Lee, Dong-Gi;Han, Gil-Young;Kim, E-Gon
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.123-132
    • /
    • 1995
  • During compression molding of fiber-reinforced polymeric composites, microstructural changes such as the fiber-matrix separation and the fiber orientation are occurred by the flow of composite materials. Since the nonhomogeneity and anisotropy of composites are caused by the separation and orientation of fibers. On the other hand, the separation and the orientation of fibers are inseparably related to each other. In this paper the degree of nonhomogeneity which is a measure of the separation is obtained using one-dimensional rectangular shaped part compression molding. And the orientation function is measured by the image processing using soft X-rayed photograph and image scanner. We study effects of the mold temperature on the degree of nonhomogeneity and the orientation function.

  • PDF

Differentiation of tidal volume & mean airway pressure with different Bag-Valve-Mask compression depth and compression rate (Bag-Valve-Mask의 사용방법에 따른 일회호흡량과 평균기도압의 변화 연구)

  • Jo, Seung-Mook;Jung, Hyung-Keon
    • The Korean Journal of Emergency Medical Services
    • /
    • v.16 no.2
    • /
    • pp.67-74
    • /
    • 2012
  • Purpose : The purpose of this study is to get basal user guidelines of safer bag-valve-mask application on patient with normal pulmonary patho-physiologic condition. Methods : This study was accomplished by pre-qualified 25 EMS junior grade students. Participants were instructed randomly compress bag to one-third, half and total and also with differesnt compression speed. Resultant tidal volumes and mean airway pressures obtained in RespiTrainer were analysed in relation to the each compression depth and rate. Results : Demographic difference does not affect tidal volume with any compression depth and rate change. Increasing compression depth is correlated with tidal volume increasement at any compression rate and also with mean airway pressure. If the compression depth is same, compression rate change did not affect significantly the resultant tidal volume or mean airway pressure. Conclusion : Hand size, Experience, BMI dose not affect tidal volume. Compress the 1600 ml bag half to total amount is safe way to offer sufficient tidal volume without risky high airway pressure delivery to patient airway who with normal lung patho-physiologic condition.

The Effect of Using a Assistant Pad when Doing Chest Compression During Cardiopulmonary Resuscitation

  • Yun, Seong-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.2
    • /
    • pp.105-110
    • /
    • 2017
  • We propose a effectiveness of the assistant pad during cardiopulmonary resuscitation and provide basic data for high quality cardiopulmonary resuscitation. The subjects of the study were 28 students in the emergency department who completed the BLS Health Care-Provider under the experimental study by the randomized crossover design. Data were analyzed by using SPSS 20.0 Version. The results of this study showed that chest compressions using assistant pads decreased pain and fatigue than normal chest compressions, and the depth of chest compressions was deeper than normal depth. The results of this study shows that the use of assistant pads between the one hand and the other hand during cardiopulmonary resuscitation may increase accuracy and depth were improved. Therefore intensive indicator also improved. However, with regard to the use of assistant pads, further studies will be needed to identify the potential for clinical use.

Immediate Fasciotomy for Acute Thermal Contact Burn Combined with Compression Injury of the Right Forearm and Hand: A Case Report (우측 전완부와 수부에 화상과 압궤손상을 입은 환자에서 즉시 근막절제술: 증례보고)

  • Jung, Sung Won;Lee, Seungje;Yoo, Kyung-Tak
    • Journal of the Korean Burn Society
    • /
    • v.23 no.1
    • /
    • pp.13-19
    • /
    • 2020
  • Treatment of compartment syndrome is early decompressive fasciotomy to prevent dreadful sequelae of ischemic necrosis of muscles and nerves. We experienced one patient of impending or early compartment syndrome of right forearm and hand caused by a hot compress machine. We did immediate fasciotomy on forearm and late flap coverage with skin graft in this patient with good results.

A Study on the Mechanical and Comfort Performances of the Working Uniform for a Volunteer Fire Brigade Member (의용소방대용 근무복 소재의 역학적 특성 및 쾌적성에 관한 연구)

  • Kwon, Myoung-Sook;Shim, Huen-Sup;Kwon, Jin
    • Journal of the Korean Society of Costume
    • /
    • v.57 no.3 s.112
    • /
    • pp.53-62
    • /
    • 2007
  • The purpose of this study was to investigate mechanical and comfort performances of the material for the improved working uniform for a volunteer fire brigade member, to get basic data for its evaluation and to help its material and design development. The results were as follows; The material of the newly developed working uniform was thinner and lighter than the material of the current used working uniform. It had better breathability, air permeability and heat transmission rate than the current one. It also had superior anti-flammability In all mechanical properties(tensile, bending, shearing, compression and surface properties), it showed better performances than the current one. It elongated and bended easier and more in both warp and weft directions. The elastic recovery and shape stability after elongation were also higher. The recovery and resistance to shearing and the resiliency and recovery after compression were also better than the current one. It was more flexible, softer and smoother in primary hand value, and was more suitable for the material for winter suit which needs softness and fullness in total hand value. The material of the improved working uniform showed lower thermal insulation value and higher evaporative resistance value compared to the material of the currently used working uniform from the sweating thermal manikin test. It was shown that the physical performances and the hand value of the textile material used in the newly developed working uniform for a volunteer fiber brigade member was improved compared to the one used in the currently used working uniform.

A Study on the Mechanical and Hand Properties of the Lining Fabrics (의복 안감의 역학적 특성 및 태 평가)

  • Kim, Myung-Ok;Uh, Mi-Kyung;Park, Myung-Ja
    • Fashion & Textile Research Journal
    • /
    • v.8 no.3
    • /
    • pp.357-362
    • /
    • 2006
  • This study is to evaluate the objective sensibility of the commercial lining fabrics. Five kinds of the linings were collected by adding taffetas with four kinds of fibers (polyester, nylon, rayon, and acetate) to one polyester stretch fabric. The six basic mechanical and hand properties were studied by using KES-FB system (Kawabata Evaluation System). The result of measuring the mechanical properties shows that polyester has high bending rigidity (B), that polyester-stretch has a high value of linearity of load-extension curve (LT), tensile energy (WT), tensile resilience (RT), and coefficient of friction (MIU) and a low value of bending rigidity(B), shear property, and geometrical roughness (SMD). The nylon has a high value of bending rigidity (B), shear property, and compression resilience (RC). The rayon has a high value of coefficient of friction (MIU) and linearity of compression-thickness curve (LC) and a low value of shear property, and the acetate has a low value of shear property. The result of hand value shows that polyester, nylon, and acetate are a high value of KOSHI (stiffness), NUMERI (smoothness), and FUKURAM (fullness & softness), and they feel stiff and massive, that rayon has a low value of NUMERI and FUKURAMI. The total result of hand value shows that polyester taffeta and polyester stretch fabric are about the same as the best material for the lining of a woman's dress for spring and summer, and the next thing is acetate, but nylon and rayon are somewhat inferior materials. This provides a fundamental data for the comfortable clothing production of a higher value-added product through the study on the mechanical and hand properties of the lining as well as the right side of fabrics.

Theoretical analysis of tensile stresses and displacement in orthotropic circular column under diametrical compression

  • Tsutsumi, Takashi;Iwashita, Hiroshi;Miyahara, Kagenobu
    • Structural Engineering and Mechanics
    • /
    • v.38 no.3
    • /
    • pp.333-347
    • /
    • 2011
  • This paper shows the solution for an orthotropic disk under the plane strain condition obtained with complex stress functions. These stress functions were induced by Lekhnitskii and expanded by one of the authors. Regarding diametrical compression test, the finite element method poses difficulties in representing the concentrated force because the specimens must be divided into finite elements during calculation. On the other hand, the method shown in this study can exactly represent this force. Some numerical results are shown and compared with those obtained under the plane stress condition for both stress and displacement. This comparison shows that the differences between the tensile stresses occurred under the plane strain condition and also that the differences under a plane stress condition increase as the orthotropy ratio increases for some cases.

Stress corrosion index of Kumamoto andesite estimated from two types of testing method

  • Jeong Hae-Sik;Nara Yoshitaka;Obara Yuzo;Kaneko Katsuhiko
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.221-228
    • /
    • 2003
  • The stress corrosion index of Kumamoto andesite are evaluated by two types of testing method. One is the uniaxial compression test under various water vapor pressures, and the other is the double torsion (DT) test under a constant water vapor pressure. For the uniaxial compression tests, the uniaxial compressive strength increases linearly with decreasing water vapor pressure on the double logarithmic coordinates. As the results, the stress corrosion index obtained is estimated 44. On the other hand, in the DT test, the relaxation (RLX) test and the constant displacement rate (CDR) test were conducted. For the CDR test, as the displacement rate of loading point increases, the crack velocity increases. However, the fracture toughness is constant regardless of the change in displacement rate and the average fracture toughness is evaluated $2.07MN/m^{3/2}$. For the RLX test, the crack velocity-stress intensity factor curves are smooth and linear. The stress corrosion index estimated from the curves is 37. Comparing stress corrosion indexes in the uniaxial compression test and the DT test, there is no significant difference in these values, and they are considered to be in coincident each other regardless of testing methods. Therefore, it is concluded that stress corrosion is one of material constants of rock.

  • PDF