• Title/Summary/Keyword: one-dimensional seismic site response analysis

Search Result 33, Processing Time 0.017 seconds

Response of a frame structure on a canyon site to spatially varying ground motions

  • Bi, Kaiming;Hao, Hong;Ren, Weixin
    • Structural Engineering and Mechanics
    • /
    • v.36 no.1
    • /
    • pp.111-127
    • /
    • 2010
  • This paper studies the effects of spatially varying ground motions on the responses of a bridge frame located on a canyon site. Compared to the spatial ground motions on a uniform flat site, which is the usual assumptions in the analysis of spatial ground motion variation effects on structures, the spatial ground motions at different locations on surface of a canyon site have different intensities owing to local site amplifications, besides the loss of coherency and phase difference. In the proposed approach, the spatial ground motions are modelled in two steps. Firstly, the base rock motions are assumed to have the same intensity and are modelled with a filtered Tajimi-Kanai power spectral density function and an empirical spatial ground motion coherency loss function. Then, power spectral density function of ground motion on surface of the canyon site is derived by considering the site amplification effect based on the one dimensional seismic wave propagation theory. Dynamic, quasi-static and total responses of the model structure to various cases of spatially varying ground motions are estimated. For comparison, responses to uniform ground motion, to spatial ground motions without considering local site effects, to spatial ground motions without considering coherency loss or phase shift are also calculated. Discussions on the ground motion spatial variation and local soil site amplification effects on structural responses are made. In particular, the effects of neglecting the site amplifications in the analysis as adopted in most studies of spatial ground motion effect on structural responses are highlighted.

Verification of Frequency-Dependent Equivalent Linear Method (주파수 의존성을 고려한 등가선형해석기법의 검증)

  • Jeong, Chang-Gyun;Kwak, Dong-Yeop;Park, Du-Hee
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.113-120
    • /
    • 2008
  • One-dimensional site response analysis is widely used to simulate the seismic site effects. The equivalent linear analysis, which is the most widely used type of site response analysis, is essentially a linear method. The method applies constant shear modulus and damping throughout the frequency range of the input motion, ignoring the dependence of the soil response on the loading frequency. A new type of equivalent linear analysis method that can simulate the frequency dependence of the soil behavior via frequency-strain curve was developed. Various forms of frequency-strain curves were proposed, and all curves were asserted to increase the accuracy of the solution. However, its validity has not been extensively proven and the effect of the shape of the frequency-strain curve is not known. This paper used two previously proposed frequency-strain curves and three additional curves developed in this study to evaluate the accuracy of the frequency-dependent equivalent linear method and the influence of the shape of the frequency-strain curves. In the evaluation, six recordings from three case histories were used. The results of the case study indicated that the shape of the frequency-strain curve has a dominant influence on the calculated response, and that the frequency dependent analysis can enhance the accuracy of the solution. However, a curve that results in the best match for all case histories did not exist and the optimum curve varied for each case. Since the optimum frequency-strain curve can not be defined, it is recommended that a suite of curves be used in the analysis.

Seismic Amplification Characteristics of Eastern Siberia (동시베리아 지역의 지진 증폭 특성)

  • Park, Du-Hee;Kwak, Hyung-Joo;Kang, Jae-Mo;Lee, Yong-Gook
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.10
    • /
    • pp.67-80
    • /
    • 2014
  • The thickness of permafrost in Eastern Siberia is from 200 to 500 meters. The seasonally frozen layer can vary from 0 to 4m depending on ground temperature and its location. The shear wave velocity varies from 80m/s in summer to 1500m/s in winter depending on soil type. When melted, large impedence will occur due to the difference between the shear wave velocity of seasonally frozen soil and that of permafrost layer. Large displacement may occur at the boundary of the melted and the frozen layer, and this phenomenon should be considered in a seismic design. In this research, one-dimensional equivalent linear analyses were performed to investigate the effects of the seasonally frozen layer on ground amplification characteristics. Soil profiles of Yakutsk and Chara in Eastern Siberia were selected from geotechnical reports. 20 recorded ground motions were used to evaluate the effect of input motions. As the thickness of seasonally frozen layer and the difference in the shear wave velocity increases, the amplification is shown to increase. Peat, very soft organic soil widely distributed throughout Eastern Siberia, is shown to cause significant ground motion amplification. It is therefore recommended to account for its influence on propagated motion.