• Title/Summary/Keyword: one-dimensional consolidation test

Search Result 46, Processing Time 0.023 seconds

A Numerical Study on One-Dimensional Consolidation of Soft Clay with Finite Strain Consolidation Theory (유한변형율(有限變形率) 압밀이론(壓密理論)에 의한 연약(軟弱) 점토(粘土)의 -차원(次元) 압밀(壓密)에 관한 수치(數値) 해석적(解析的) 연구)

  • Yoo, Nam-Jae;Jung, Yoon-Hwa;Lee, Myung-Woog
    • Journal of Industrial Technology
    • /
    • v.11
    • /
    • pp.85-98
    • /
    • 1991
  • A numerical study was performed to investigate characteristics of one-dimensional consolidation of soft clay. Results of consolidation tests with the remolded normally consolidation clay of having a very high initial void ratio were analyzed by using the numerical technique of finite difference method based on the finite strain consolidation theory, to evaluate consolidational characteristics of soft clay under surcharges on the top of clay. On the other hand, a numerical parametric study on soft clay consolidated due to its self-weight was also carried out to find its effect on one-dimensional consolidation. Terzaghi's conventional consolidation theory, finite strain consolidation theories with linear and non-linear interpolation of effective stress - void ratio - permeability relation were used to analyze the test results and their results were compared to each other to figure out the difference between them. Therefore, the validity of theories was assessed.

  • PDF

Mechanism of Consolidation Displacement on Internal Behavior of Clay Ground Improved by Sand Drain (샌드 드레인으로 개량된 점토지반의 내부거동에 대한 압밀변형 메커니즘)

  • Baek, Won-Jin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.6
    • /
    • pp.69-77
    • /
    • 2006
  • In this study, the large scaled model test improved by sand drain was carried out to clarify the internal behavior of the three-dimensional consolidation under different secondary consolidation periods. From the results of model test, the void ratio in the undrained side was lager than in the drained side. In addition, the unconfined compressive strength in the long-term consolidated specimen was larger than that in the short-term consolidated one. It was also found that the unconfined compressive strength was larger in the drained side than in the undrained side. These reasons are considered to be due to the large effective stress by quick pore water pressure dissipation by the short drainage distance in the drained side. Furthermore, in order to investigate the three-dimensional consolidation behavior of clay ground improved by the vertical drain method, the numerical analysis obtained from the three-dimensional elasto-viscous consolidation theory proposed by author (2006) were compared with the test results. It was found that during the three-dimensional consolidation process not only vertical displacement but also radial displacement occurs inside the specimen.

Vacuum Consolidation on Highly Compressible Soil (고 압축성 토질에서의 진공압밀)

  • 정연인
    • Geotechnical Engineering
    • /
    • v.11 no.4
    • /
    • pp.13-24
    • /
    • 1995
  • Laboratory testings, consisting of soil properties testing and vacuum consolidation testing with and without vertical wick drain, were carried out on five different types of soil to determine soil properties and relationship between settlement and time. One dimensional consolidation teat was performed to determine if this test could be used for predicting the behavior of soils during vacuum consolidation. From the results of this study, the one dimensional consolidation test does not appear to be suitable for predicting the rate of vacuum consolidation without wick drain. However, one dimensional consolidation test reasonably predicts the total settlement of vacuum consolidation without wick drain. In vacuum consolidation, the amount of the settlement for silty soils were more or less the same for both cases, with wick drain and without wick drain, even if the time required for consolidation was considerably different. And, strategic placement of wick drain ensures moisture content and the value of the density are similar throughout the soil sample. However, the presence of wick drain for clay Boils increased the amount of settlement and also shortened the time required for consolidation.

  • PDF

Effects of Loading Conditions on Consolidation Beharion of the Soft Clay (하중조건이 연약초토의 압밀에 미치는 영향)

  • 강병희
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.4
    • /
    • pp.2445-2455
    • /
    • 1971
  • One-dimensional Consolidation tests with pore pressure measurement were caried in the ANTE-US consolidometer in order to investigate the effects of loading conditions on consolidation behavior of the soft clay. Undisturbed specimens of a sensitive clay were loaded in load-increment ratioes 0.5, 1.0 and 2.0, and load increment duration of 1, 6, 12, 24 and 48 hours with the application of 40 psi of back pressure. There is no significant effect of load-increment ratio on compression-pressure relationship, but the test with one-hour load increment duration doesn't represent the same results of the standard consolidation test in the sensitive clay.

  • PDF

Centrifuge Model Experiments on One-dimensional Consolidation of Soft Clay with Surcharges (상재하중에 의한 연약점토의 일차원 압밀에 관한 원심모형실험)

  • Yoo, Nam-Jae;Lee, Myung-Woog;Lee, Jong-Ho
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.103-110
    • /
    • 1997
  • This thesis is to investigate the one-dimensional consolidation behavior of soft marine clay with uniform surcharges by perfoming numerical and experimental works. Parametric experimental works of centrifuge model test were carried out changing test conditions of gravitational level in centrifuge, magnitude of surcharges and construction sequence of applying surcharges. Results of centrifuge model experiments were analyzed by using the numerical technique of explicit finite difference method based on the finite strain consolidation theory, being known to be appropriate to analyze the consolidational behavior of soft clay with a very high initial void ratio using the Lagrangian and the material coordinate systems. Test results were in relatively good agreements with analyzed results in terms of excess pore pressure dissipation and consolidation settlement with time and final void ratio distribution.

  • PDF

A Study on the Consolidation Characteristics According to the Continuous Loading Consolidation Test (연속재하 압밀실험에 의한 압밀특성에 관한 연구)

  • 채영수;우승우
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.59-66
    • /
    • 1999
  • ILT proposed by Tezaghi was frequently used which is based on one dimensional consolidation theory. But this test require time longer than a week and has problems for extra soft clay such as the squeezing around the consolidation ring. Also consolidation curve is not clearly defined since only a few data is obtained in a test. Therefore it is difficult to determine Pc and the interpretation to determine the consolidation constants are rather complicated. In this paper, the stress-strain relationship and consolidation constant obtained by CRS and CG-test were analyzed and compared with the results by ILT.

  • PDF

One-dimensional nonlinear consolidation behavior of structured soft clay under time-dependent loading

  • Liu, Weizheng;Shi, Zhiguo;Zhang, Junhui;Zhang, Dingwen
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.299-313
    • /
    • 2019
  • This research investigated the nonlinear compressibility, permeability, the yielding due to structural degradation and their effects on consolidation behavior of structured soft soils. Based on oedometer and hydraulic conductivity test results of natural and reconstituted soft clays, linear log (1+e) ~ $log\;{\sigma}^{\prime}$ and log (1+e) ~ $log\;k_v$ relationships were developed to capture the variations in compressibility and permeability, and the yield stress ratio (YSR) was introduced to characterize the soil structure of natural soft clay. Semi-analytical solutions for one-dimensional consolidation of soft clay under time-dependent loading incorporating the effects of soil nonlinearity and soil structure were proposed. The semi-analytical solutions were verified against field measurements of a well-documented test embankment and they can give better accuracy in prediction of excess pore pressure compared to the predictions using the existing analytical solutions. Additionally, parametric studies were conducted to analyze the effects of YSR, compression index (${\lambda}_r$ and ${\lambda}_c$), and permeability index (${\eta}_k$) on the consolidation behavior of structured soft clays. The magnitude of the difference between degree of consolidation based on excess pore pressure ($U_p$) and that based on strain ($U_s$) depends on YSR. The parameter ${\lambda}_c/{\eta}_k$ plays a significant role in predicting consolidation behavior.

Prediction of Residual Settlement of Ground Improved by Vertical Drains Using the Elasto-Viscous Consolidation Model (I) - Verification of the Applicability of Theory - (탄-점성 압밀이론에 의한 버티칼 드레인 타설지반의 잔류침하 예측 (I) -이론의 적용성 검증)

  • Baek, Won-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.69-77
    • /
    • 2007
  • In this study, the consolidation behavior of clayey ground improved by vertical drain method was analyzed by the finite difference method based on the three-dimensional elasto-viscous consolidation theory, which can express the behavior of the secondary consolidation without considering the distinction of the normally consolidated and overconsolidated states. And the applicability of the elasto-viscous consolidation theory was discussed by comparing with the test results obtained from the model test of ground improved by vertical drain system. From these results, it is found that the amount of the settlement when the excess pore water pressure almost dissipated in the clay ground with vertical drains became smaller than that of the one-dimensional condition, and then the amount and rate of the residual settlement at secondary consolidation process became larger than those of the one-dimensional condition. finally, the effect of soil parameter on behavior of consolidation process was investigated by the results of a series of numerical analysis for the normalized and overconsoldiated states.

A Study on Similarity Rule of Loading Period and Thickness with One-dimensional Consolidation Process for Clay (점토의 1차원 압밀과정에 있어서 재하시간과 층두께에 대한 상사법칙에 관한 연구)

  • Kim, Jae Young;Ohshima, Akihiko
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.369-376
    • /
    • 2006
  • Similarity rule in order to predict the field settlement and consolidation time from oedometer test is not clear because of the thickness, loading time, rate of loading increase, dependence on strain inherent of clay. To investigate the one-dimensional consolidation tests with permeability tests varied loading period and specimen thickness were carried out the application of similarity rule. Main conclusions are 1) f(=1+e)-logk line is a unique property of the soil, 2) $c_{\nu}$, k need no correction, 3)similarity rule is depends on the positions of f-logp line and primary consolidation line.

Consolidation Model and Numerical Analysis for Soft Clay Ground Considering Characteristics of Material Function (물질함수특성을 고려한 연약 점토지반의 압밀모델 및 수치해석)

  • Jeon, Je-Sung;Yi, Chang-Tok;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.123-136
    • /
    • 2004
  • Terzaghi's one-dimensional consolidation theory has some important assumption, which can't be applicable to predict the behavior of soft clay ground. Especially, predictions using infinitesimal strain and linear material function related with permeability can give rise to mistake in comparison with the result of real behavior in site. For this reason, Gibson et al. established a rigorous formulation for the one-dimensional nonlinear finite strain consolidation theory, which can consider non-linearity of material function. But it is difficult to apply this theory to predict the behavior of common soft clay ground with vertical drain. In this study, consolidation model which can consider the vertical and horizontal flow of a fully saturated clay layer, self-weight of soil and nonlinear characteristics of compressibility and permeability are derived. Numerical analysis scheme, which can be applied to consolidation analysis by derived consolidation model in this study was developed. The characteristics of material function were examined using laboratory testing such as standard consolidation test, Rowe-cell test and modified consolidation test.