• 제목/요약/키워드: one way shear capacity

검색결과 16건 처리시간 0.024초

유공 합성보의 강도식에 관한 연구 (Ultimate Strength of Composite Beams with Unreinforced Web Opening)

  • 김창호;박종원;김희구
    • 콘크리트학회논문집
    • /
    • 제12권5호
    • /
    • pp.101-110
    • /
    • 2000
  • A practical approach of calculating the ultimate strength of composite beams with unreinforced web opning is proposed through shear behavioral tests. In this method, the slab shear contribution at the opening is calculated as the smaller value of the pullout capacity of shear connector at the high moment end and the one way shear capacity of slab. A simple interaction equation is used to predict the ultimate strength under simultaneous bending moment and shear force. Strength prediction by the proposed method is compared with previous test results and the predictions by other analytical methods. The comparison shows that the proposed method predicts the ultimate capacity with resonable accuracy.

비정질 강섬유 보강 일방향 콘크리트 슬래브의 전단성능에 대한 실험적 연구 (An Experimental Study of Shear Capacity for One-way Concrete Slabs Reinforced with Amorphous Micro Steel Fibers)

  • 김선두;최경규;최완철;최세진
    • 한국건설순환자원학회논문집
    • /
    • 제1권2호
    • /
    • pp.128-135
    • /
    • 2013
  • 본 연구에서는 비정질 강섬유보강 콘크리트 슬래브의 전단성능을 분석하기 위하여 일면 전단 실험을 수행하였다. 주요 변수는 전단보강방법과 전단보강비이며, 1종류의 무전단보강실험체와 3종류의 전단보강실험체(전단철근, 0.25%, 0.5% 비정질 강섬유보강 실험체)의 일방향 슬래브 실험체를 제작하여 실험하였다. 실험결과, 0.25% 비정질 강섬유보강실험체는 전단 성능이 향상되었지만 0.5% 실험체는 0.25% 보강실험체에 비해 전단성능이 향상되지 않았다. 섬유 보강비에 따른 전단보강 효과를 파악하기 위한 추가적인 연구가 필요하다.

Flexural behaviour and capacity of composite panels of light gage steel and concrete

  • Shi, L.;Liu, Y.;Dawe, J.L.;Bischoff, P.
    • Steel and Composite Structures
    • /
    • 제9권5호
    • /
    • pp.397-418
    • /
    • 2009
  • Eight panel specimens were tested in one-way bending to study the behaviour and capacity of composite slab joists consisting of cold-formed steel C-sections and concrete. Various shear transfer mechanisms were implemented on the C-section flange embedded in the concrete to provide the longitudinal shear resistance. Results showed that all specimens reached serviceability limit state while in elastic range and failure was ductile. Shear transfer achieved for all specimens ranged from 42 to 99% of a full transfer while specimens employed with shear transfer enhancements showed a greater percentage and therefore a higher strength compared with those relying only on surface bond to resist shear. The implementation of pre-drilled holes on the embedded flange of the steel C-section was shown to be most effective. The correlation study between the push-out and panel specimens indicated that the calculated moment capacity based on shear transfer resistance obtained from push-out tests was, on average, 10% lower than the experimental ultimate capacity of the panel specimen.

Shear-strengthening of RC continuous T-beams with spliced CFRP U-strips around bars against flange top

  • Zhou, Chaoyang;Ren, Da;Cheng, Xiaonian
    • Structural Engineering and Mechanics
    • /
    • 제64권1호
    • /
    • pp.135-143
    • /
    • 2017
  • To upgrade shear performance of reinforced concrete (RC) beams, and particularly of the segments under negative moment within continuous T-section beams, a series of original schemes has been proposed using carbon fibre-reinforced polymer (CFRP) U-shaped strips for shear-strengthening. The current work focuses on one of them, in which CFRP U-strips are wound around steel bars against the top of the flange of a T-beam and then spliced on its bottom face in addition to being bonded onto its sides. The test results showed that the proposed scheme successfully provided reliable anchorage for U-strips and prevented premature onset of shear failure due to FRP debonding. The governing shear mode of failure changed from peeling of CFRP to its fracture or crushing of concrete. The strengthened specimens displayed an average increase of about 60% in shear capacity over the unstrengthened control one. The specimen with a relatively high ratio and uniform distribution of CFRP reinforcement had a maximum increase of nearly 75% in strength as well as significantly improved ductility. The formulas by various codes or guidelines exhibited different accuracy in estimating FRP contribution to shear resistance of the segments that are subjected to negative moment and strengthened with well-anchored FRP U-strips within continuous T-beams. Further investigation is necessary to find a suitable approach to predicting load-carrying capacity of continuous beams shear strengthened in this way.

하의용 시판 신축성 소재의 물리적 특성과 맞음새에 과한 연구 -스커트를 중심으로- (Fitness and Physical Properties in Current Stretch Fabrics for Bottoms -Focused on the Tight Skirt-)

  • 이진희;최혜선;도월희
    • 한국의류학회지
    • /
    • 제26권10호
    • /
    • pp.1467-1477
    • /
    • 2002
  • This study was investigated physical properties of stretch fabrics by KES-FB system to show suitable basic data to making skirts of excellent capacity and develop more organized basic skirt pattern by fitness evaluation. 1. The results of T. H. V.(Total Hand Value) were as followa: In the kind of blending fiber, cotton/spandex was more excellent than nylon/spandex and polyester/spandex, in the direction of stretch, one-way(weft inserted polyurethan yarn) polyester/spandex and cotton/spandex were higher than two-way(warp and wet inserted polyurethan yarn) polyester/spandes and cotton/spandex, two-way nylon/spandex was higher than one-way nylon/spandex. 2. The results of calculating the variance between sample stretch fabrics and Japanese s/s women's suit fabrics after standardizing were as follows: Stretch fabrics has 2 range of tensile, bending, shearing, compression, surface, thickness and weight as compared with Jpanese s/s women's suit fabrics. In the tensile property, one-way stretch fabrics were almost the same with Japanese s/s women's suit fabrics, only two-way polyester/spandex had+1~+2 range. In the bending, shear property, there was no difference between sample fabrics and Japanese s/s women's suit fabrics 3. In the total fitness of the skirt, nylon/spandex is the best in the fabrics and one-way stretch fabric is better than two-way strethch fabric.

Comparative in-plane pushover response of a typical RC rectangular wall designed by different standards

  • Dashti, Farhad;Dhakal, Rajesh P.;Pampanin, Stefano
    • Earthquakes and Structures
    • /
    • 제7권5호
    • /
    • pp.667-689
    • /
    • 2014
  • Structural walls (also known as shear walls) are one of the common lateral load resisting elements in reinforced concrete (RC) buildings in seismic regions. The performance of RC structural walls in recent earthquakes has exposed some problems with the existing design of RC structural walls. The main issues lie around the buckling of bars, out-of plane deformation of the wall (especially the zone deteriorated in compression), reinforcement getting snapped beneath a solitary thin crack etc. This study compares performance of a typical wall designed by different standards. For this purpose, a case study RC shear wall is taken from the Hotel Grand Chancellor in Christchurch which was designed according to the 1982 version of the New Zealand concrete structures standard (NZS3101:1982). The wall is redesigned in this study to comply with the detailing requirements of three standards; ACI-318-11, NZS3101:2006 and Eurocode 8 in such a way that they provide the same flexural and shear capacity. Based on section analysis and pushover analysis, nonlinear responses of the walls are compared in terms of their lateral load capacity and curvature as well as displacement ductilities, and the effect of the code limitations on nonlinear responses of the different walls are evaluated. A parametric study is also carried out to further investigate the effect of confinement length and axial load ratio on the lateral response of shear walls.

전단보강에 따른 일방향 중공슬래브의 휨 성능 평가 (Evaluation on Flexural Performance of One-Way Hollow Slabs according to the Shear Reinforcement)

  • 유유진;석근영;김기철;강주원
    • 한국공간구조학회논문집
    • /
    • 제14권2호
    • /
    • pp.79-86
    • /
    • 2014
  • The purpose of this study is intended to determine the validity of shear reinforcement by evaluating flexural performance in the hollow slab. The hollow slab is relatively light and second moment of inertia is large. Due to these characteristics, it can be used to slab system efficiently. Therefore the prediction of the structural behaviors is very important because of decrease of shear and flexural strength which is caused by hollow section of slab interior. In this study, the flexural test were performed to analyze the flexural capacity of the hollow slab w/ or w/o shear reinforcement. A total of six full scale specimens were tested. These specimens have three cases of reinforcing bar ratio, 0.009, 0.018 and 0.024. To verify the flexural behavior such as ultimate load, load-deflection and crack pattern, the flexural experiment were tested by using loading frame. Experimental results have shown that the flexural behavior are depend on the reinforcing bar ratio. Also the hollow slab with shear reinforcement have shown flexural behavior. Therefore, it is appropriate that the hollow slab is reinforced by shear reinforcement to improve the flexural performance of the hollow slab.

교량용 탄성받침의 설계압축응력에 대한 고찰 (The Design Criteria of elastomeric Bearing for Highway Bridges)

  • 전규식;이병진;조해진;정명호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.481-488
    • /
    • 1998
  • Elastomeric bearing is used as one of the most useful way for isolation structures, because the horizontal stiffness is much lower than the vertical stiffness. In the design criteria of Elastomeric bearing, the stability of the bearings is evaluated by shear strain due to compression, lateral displacement, and rotation. The question how soft rubber can sustain heavy structure is now able to be solved by Ultimate capacity test of Laminated Elastomeric Bearings, which results 1,200kg/$\textrm{cm}^2$ of the max. compressive stress and this shows what a sufficient safety factor Elastomeric bearing has !

  • PDF

Behavior of one way reinforced concrete slabs with styropor blocks

  • Al-Azzawi, Adel A.;Abbas, J;Al-Asdi, Al-Asdi
    • Advances in concrete construction
    • /
    • 제5권5호
    • /
    • pp.451-468
    • /
    • 2017
  • The problem of reducing the self-weight of reinforced concrete structures is very important issue. There are two approaches which may be used to reduced member weight. The first is tackled through reducing the cross sectional area by using voids and the second through using light weight materials. Reducing the weight of slabs is very important as it constitutes the effective portion of dead loads in the structural building. Eleven slab specimens was casted in this research. The slabs are made one way though using two simple supports. The tested specimens comprised three reference solid slabs and eight styropor block slabs having (23% and 29%) reduction in weight. The voids in slabs were made using styropor at the ineffective concrete zones in resisting the tensile stresses. All slab specimens have the dimensions ($1100{\times}600{\times}120mm$) except one solid specimens has depth 85 mm (to give reduction in weight of 29% which is equal to the styropor block slab reduction). Two loading positions or cases (A and B) (as two-line monotonic loads) with shear span to effective depth ratio of (a/d=3, 2) respectively, were used to trace the structural behavior of styropor block slab. The best results are obtained for styropor block slab strengthened by minimum shear reinforcement with weight reduction of (29%). The increase in the strength capacity was (8.6% and 5.7%) compared to the solid slabs under loading cases A and B respectively. Despite the appearance of cracks in styropor block slab with loads lesser than those in the solid slab, the development and width of cracks in styropor block slab is significantly restricted as a result of presence a mesh of reinforcement in upper concrete portion.

Behavior of lightweight aggregate concrete voided slabs

  • Adel A. Al-Azzawi;Ali O, AL-Khaleel
    • Computers and Concrete
    • /
    • 제32권4호
    • /
    • pp.351-363
    • /
    • 2023
  • Reducing the self-weight of reinforced concrete structures problem is discussed in this paper by using two types of self-weight reduction, the first is by using lightweight coarse aggregate (crushed brick) and the second is by using styropor block. Experimental and Numerical studies are conducted on (LWAC) lightweight aggregate reinforced concrete slabs, having styropor blocks with various sizes of blocks and the ratio of shear span to the effective depth (a/d). The experimental part included testing eleven lightweight concrete one-way simply supported slabs, comprising three as reference slabs (solid slabs) and eight as styropor block slabs (SBS) with a total reduction in cross-sectional area of (43.3% and 49.7%) were considered. The holes were formed by placing styropor at the ineffective concrete zones in resisting the tensile stresses. The length, width, and thickness of specimen dimensions were 1.1 m, 0.6 m, and 0.12 m respectively, except one specimen had a depth of 85 mm (which has a cross-sectional area equal to styropor block slab with a weight reduction of 49.7%). Two shear spans to effective depth ratios (a/d) of (3.125) for load case (A) and (a/d) of (2) for load case (B), (two-line monotonic loads) are considered. The test results showed under loading cases A and B (using minimum shear reinforcement and the reduction in cross-sectional area of styropor block slab by 29.1%) caused an increase in strength capacity by 60.4% and 54.6 % compared to the lightweight reference slab. Also, the best percentage of reduction in cross-sectional area is found to be 49.7%. Numerically, the computer program named (ANSYS) was used to study the behavior of these reinforced concrete slabs by using the finite element method. The results show acceptable agreement with the experimental test results. The average difference between experimental and numerical results is found to be (11.06%) in ultimate strength and (5.33%) in ultimate deflection.