• Title/Summary/Keyword: on-the-machine measurement

Search Result 1,034, Processing Time 0.032 seconds

Computer aided dynamic accuracy evaluation on CNC machine tools (전산기를 이용한 CNC 공작 기계의 동적 정밀도의 평가에 대한 연구)

  • Kwon, H.D.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.7
    • /
    • pp.24-28
    • /
    • 1996
  • In this paper, a new measurement system has been developed for measuring servo errors of CNC machine tools. Unlike the ball link bar method using circular path, the developed system uses two orthogonal straight paths for measurement of errors, giving relatively short test length. For position measurment, linear displacement sensor and steel cube have been designed, and the software for relevant data sampling and error evaluation has been implemented.

  • PDF

Development of On-line Wrinkle Measurement System Using Machine Vision (머신 비젼을 이용한 실시간 링클 측정 시스템 개발)

  • Shin, Dong-Keun;To, Hoang-Minh;Ko, Sung-Lim
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.274-279
    • /
    • 2008
  • Roll to roll (R2R) manufacturing process, also known as 'web processing', has been tried for producing electronic devices on a flexible plastic or metal foil. To increase the performance and productivity the R2R process, effective control and on-line supervision for web quality becomes very important. Wrinkle is one of the defects, which is incurred due to compressive stresses. A system for on-line measurement of wrinkle is developed using area scan camera and machine vision laser. The 2D image, obtained by area scan camera, is produced by Gaussian regression method to characterize the wrinkle on a transparent web. The experiment proves that 0.3mm wrinkle height can be measured successfully with 74fps.

A Computer-Aided Inspection Planning System for On-Machine Measurement - Part I : Global Inspection Planning -

  • Lee, Hong-Hee;Cho, Myeong-Woo;Yoon, Gil-Sang;Choi, Jin-Hwa
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1349-1357
    • /
    • 2004
  • Computer-Aided Inspection Planning (CAIP) is the integration bridge between CAD/CAM and Computer Aided Inspection (CAI). A CAIP system for On-Machine Measurement (OMM) is proposed to inspect the complicated mechanical parts efficiently during machining or after machining. The inspection planning consists of Global Inspection Planning (GIP) and Local Inspection Planning (LIP). In the GIP, the system creates the optimal inspection sequence of the features in a part by analyzing the various feature information such as the relationship of the features, Probe Approach Directions (PAD), etc. Feature groups are formed for effective planning, and special feature groups are determined for sequencing. The integrated process and inspection plan is generated based on the sequences of the feature groups and the features in a feature group. A series of heuristic rules are developed to accomplish it. In the LIP of Part II, the system generates inspection parameters. The integrated inspection planning is able to determine optimum manufacturing sequence for inspection and machining processes. Finally, the results are simulated and analyzed to verify the effectiveness of the proposed CAIP.

Development of a Fizeau Interferometer System for Measuring the Profile of Large Optical Lens (대구경 렌즈의 형상 측정을 위한 Fizeau 간섭계 시스템 개발)

  • Bae, Kwang-Hwan;Lee, Eung-Suk;Lee, Ki-Am;Kim, Ok-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1649-1657
    • /
    • 2006
  • Fizeau interferometer is well known optical instrument for measuring the lens profile accurately. The object of this study is focused on the design and optical measuring techniques for large optical components, such as a reflection mirror for astronomical purpose. Measuring of large optical lens, the object could not be moved as small one but the measuring instrument must be moved for the alignment, because of the geometric conditions and the accuracy of the stage. Therefore, a five axis stage is designed to align the Interferometer instead of the measuring object. This instrument will be used for an on machine measuring system in polishing machine for large optical lens.

Integrated Machining Error Compensation Method Using OMM Data and Modified PNN Algorithm (PNN을 이용한 기상측정데이터 기반 가공오차보상법)

  • Seo Tae-Il;Cho Myeong-Woo;Hong Yeon-Chan;Kim Gun-Hee
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.4
    • /
    • pp.92-97
    • /
    • 2006
  • This paper presents an integrated machining error compensation method based on PNN(Polynomial Neural Network) approach and inspection database of OMM(On-Machine-Measurement) system. To efficiently analyze the machining errors, two machining error parameters are defined and modeled using the PNN approach, which is used to determine machining errors for the considered cutting conditions. Experiments are carried out to validate the approaches proposed in this paper. In result, the proposed methods can be effectively implemented in a real machining situation, producing much fewer errors.

Study on Modeling and Experiment of Optical Three Axis Tool-Origin Sensor for Applications of Micro Machine-Tools (초소형 공작기계 적용을 고려한 광학식 3 축 공구원점 센서 모델링 및 실험에 관한 연구)

  • Shin, Woo-Cheol;Lee, Hyeon-Hwa;Ro, Seung-Kook;Park, Jong-Kweon;Noh, Myoung-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.68-73
    • /
    • 2009
  • One of the traditional optical methods to monitor a tool is a CCD sensor-based vision system which captures an aspect of the tool in real time. In the case using the CCD sensor, specific lens-modules are necessary to monitor the tool with higher resolution than its pixel size, and a microprocessor is required to attain desired data from captured images. Thus theses additional devices make the entire measurement system complex. Another method is to use a pair of an optical source and a detector per measuring axis. Since the method is based on the intensity modulation, the structure of the measurement system is simper than the CCD sensor-based vision system. However, in the case measuring the three dimensional position of the tool, it is difficult to apply to micro machine-tools because there may not be space to integrate three pairs of an optical source and a detector. In this paper, in order to develop a tool-origin measurement system which is employed in micro machine-tools, the improved method to measure a tool origin in x, y and z axes is introduced. The method is based on the intensity modulation and employs one pair of an optical source radiating divergent beams and a quadrant photodiode to detect a three dimensional position of the tool. This paper presents the measurement models of the proposed tool-origin sensor. The models were verified experimentally The verification results show that the proposed method is possible and the induced models are available for design.

NC Technology for High-Precision Machining in Machining Centers (머시닝센터에서 고정밀 가공을 위한 NC 기술)

  • 정성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.748-754
    • /
    • 1994
  • This paper deals with a geometric error simulator, measurement and inspection of workpiece errors on the machine tools, and identification and compensation methodology of thermal errors in machining centers. In order to raise the machining accuracy of workpieces a measurement and inspection system on the machine tool is developed. By using MPPGT module Manual and CNC type CMMs are realized on the machining centers. To compensate for geometric and thermal deformation errors of machining centers, a real time and an off line geometric adaptive control system were developed on the machining centers. A vertical and a horizontal machining center equipped with FANUC 0MC were used for experiments. Performance of the systems were confirmed with a large amount of experiment.

  • PDF

Squareness Estimation for Coordinate Measuring Machine Using the Laser Interferometer Measurement Based on the Face-Diagonal Method (Face-Diagonal 방법 기반의 레이저 간섭계 측정을 이용한 CMM 의 직각도 추정)

  • Lee, Hoon Hee;Lee, Dong Mok;Yang, Seung Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.4
    • /
    • pp.295-301
    • /
    • 2016
  • The out-of-squareness is one of the error sources that affect the positioning accuracy of machine tools and coordinate measuring machines. Laser interferometer is widely used to measure the position and angular errors, and can measure the squareness using an optical square. However, the squareness measurement using the laser interferometer is difficult, as compared to other errors due to complicated optics setup and Abbe's error occurrence. The effect of out-of-squareness mainly appears at the face-diagonal of the movable plane. The diagonal displacements are also affected by the position dependent geometric errors. In this study, the squareness estimation techniques via diagonal displacement measurement using the laser interferometer without an optical square were proposed. For accurate estimation and measurement time reduction, the errors selected from proposed discriminant were measured. Discrepancy between the proposed technique with the laser interferometer (with an optical square) result was $0.6{\mu}rad$.

Radiation Measurement of a Operational CANDU Reactor Fuel Handling Machine using Semiconductor Sensors (ICCAS 2003)

  • Lee, Nam-Ho;Kim, Seung-Ho;Kim, Yang-Mo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1220-1224
    • /
    • 2003
  • In this paper, we measured the radiation dose of a fuel handling machine of the CANDU type Wolsong nuclear reactor directly during operation, in spite of the high radiation level. In this paper we will describe the sensor development, measurement techniques, and results of our study. For this study, we used specially developed semiconductor sensors and matching dosimetry techniques for the mixed radiation field. MOSFET dosimeters with a thin oxide, that are tuned to a high dose, were used to measure the ionizing radiation dose. Silicon diode dosimeters with an optimum area to thickness ratio were used for the radiation damage measurements. The sensors are able to distinguish neutrons from gamma/X-rays. To measure the radiation dose, electronic sensor modules were installed on two locations of the fuel handling machine. The measurements were performed throughout one reactor maintenance cycle. The resultant annual cumulative dose of gamma/X-rays on the two spots of the fuel handling machine were 18.47 Mrad and 76.50 Mrad, and those of the neutrons were 17.51 krad and 60.67 krad. The measured radiation level is high enough to degrade certain cable insulation materials that may result in electrical insulation failure.

  • PDF

Conical Path Generation Technique for Ball Bar Measurement Using Simultaneous 5-Axis Motion Control (5 축 동시 구동을 통한 볼바 측정용 원추형 경로 생성 방법)

  • Lee, Dong-Mok;Lee, Jae-Chang;Yang, Seung-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.97-103
    • /
    • 2013
  • This study proposes a path generation technique for simultaneous five-axis driving for ball bar measurement, which is equivalent to cone frustum machining as mentioned in the NAS979 standard. The technique is generalized for a 3D circular path, and it is applicable to all machine tools regardless of their structural configurations. A mathematical machine input model that consists of a five-axis machine tool, ball-bar measurement and conical path information as inputs is presented for easy NC code generation, simulation for various test conditions, and a measurement test. The movement range of rotary axes, which depends on various conditions, is mathematically analyzed based on the proposed conical path model. Moreover, the effect of the movement range on various conditions (apex angle and inclination angle, ball bar tilting acceptance angle, offset position of workpiece ball, etc.) is analyzed.