• Title/Summary/Keyword: on-line optimal control

Search Result 276, Processing Time 0.023 seconds

A Study On The Trajectory Control of A SCARA Robot Using Sliding Mode (슬라이딩모드를 이용한 SCARA 로보트의 궤적제어에 관한 연구)

  • 이민철;진상영;이만형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.99-110
    • /
    • 1995
  • An industrial robot needs a simple and robust control algorithm obtaining high precision control performance in spite of disturbance and parameter's change. In this paper, for solving this problem, a new sliding mode control algorithm is proposed and applied to the trajectory control of a SCARA type robot. The proposed algorithm has diminished the chattering occurring in sliding mode by setting a dead band along the switching line on the phase plane. It shows that we can easily obtain a simple switching control input satisfying sliding mode in spite of regarding nonlinear terms of a manipulator and servo system as disturbance. A guideline for selection of dead-band width is determined by optimal value of cost function presenting magnitudes of chattering and error. By this algorithm, we can expect the high performance of the trajectory tracking of an industrial robot which needs a robust and simple algorithm.

A Study on the Load Frequency Control of 2-Area Power System using Fuzzy-Neural Network Controller (퍼지-신경망 제어기를 이용한 2지역 계통의 부하주파수제어에 관한연구)

  • Chung, Hyeng-Hwan;Kim, Sang-Hyo;Joo, Seok-Min;Lee, Jeong-Phil;Lee, Dong-Chul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.2
    • /
    • pp.97-106
    • /
    • 1999
  • This paper proposes the structure and the algorithm of the Fuzzy-Neural Controller(FNNC) which is able to adapt itself to unknown plant and the change of circumstances at the Fuzzy Logic Controller(FLC) with the Neural Network. This Learning Fuzzy Logic Controller is made up of Fuzzy Logic controller in charge of a main role and Neural Network of an adaptation in variable circumstances. This construct optimal fuzzy controller applied to the 2-area load frequency control of power system, and then it would examine fitness about parameter variation of plant or variation of circumstances. And it proposes the optimal Scale factor method wsint three preformance functions( E, , U) of system dynamics of load frequency control with error back-propagation learning algorithm. Applying the controller to the model of load frequency control, it is shown that the FNNC method has better rapidity for load disturbance, reduces load frequency maximum deviation and tie line power flow deviation and minimizes reaching and settling time compared to the Optimal Fuzzy Logic Controller(OFLC) and the Optimal Control for optimzation of performance index in past control techniques.

  • PDF

On-line Monitoring and Control of Substrate Concentrations in Biological Processes by Flow Injection Analysis Systems

  • Rhee, Jong-Il;Adnan Ritzka;Thomas Scheper
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.3
    • /
    • pp.156-165
    • /
    • 2004
  • Concentrations of substrates, glucose, and ammionia in biological processes have been on-line monitored by using glucose-flow injection (FIA) and ammonia-FIA systems. Based on the on-line monitored data the concentrations of substrates have been controlled by an on-off controller, a PID controller, and a neural network (NN) based controller. A simulation program has been developed to test the control quality of each controller and to estimate the control parameters. The on-off controller often produced high oscillations at the set point due to its low robustness. The control quality of a PID controller could have been improved by a high analysis frequency and by a short residence time of sample in a FIA system. A NN-based controller with 3 layers has been developed, and a 3(input)-2(hidden)-1(output) network structure has been found to be optimal for the NN-based controller. The performance of the three controllers has been tested in a simulated process as well as in a cultivation process of Saccharomyces cerevisiae, and the performance has also been compared to simulation results. The NN-based controller with the 3-2-1 network structure was robust and stable against some disturbances, such as a sudden injection of distilled water into a biological process.

On-line Trajectory Optimization Based on Automatic Time Warping (자동 타임 워핑에 기반한 온라인 궤적 최적화)

  • Han, Daseong;Noh, Junyong;Shin, Joseph S.
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.3
    • /
    • pp.105-113
    • /
    • 2017
  • This paper presents a novel on-line trajectory optimization framework based on automatic time warping, which performs the time warping of a reference motion while optimizing character motion control. Unlike existing physics-based character animation methods where sampling times for a reference motion are uniform or fixed during optimization in general, our method considers the change of sampling times on top of the dynamics of character motion in the same optimization, which allows the character to effectively respond to external pushes with optimal time warping. In order to do so, we formulate an optimal control problem which takes into account both the full-body dynamics and the change of sampling time for a reference motion, and present a model predictive control framework that produces an optimal control policy for character motion and sampling time by repeatedly solving the problem for a fixed-span time window while shifting it along the time axis. Our experimental results show the robustness of our framework to external perturbations and the effectiveness on rhythmic motion synthesis in accordance with a given piece of background music.

Coordinated Wide-Area Regulation of Transmission System for Voltage Profile Improvement and Power Loss Reduction

  • Asadzadeh, Babak;Golshannavaz, Sajjad
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.5
    • /
    • pp.279-286
    • /
    • 2017
  • In this paper, an optimal approach for the wide-area regulation of control devices in a transmission network is proposed. In order to realize an improved voltage profile and reduced power loss, existing devices such as tap-changing transformers, synchronous machines, and capacitor banks should be controlled in a coordinated and on-line manner. It is well-understood that phasor measurement units in transmission substations allow the system operators to access the on-line loading and operation status of the network. Accordingly, this study proposes efficient software applications that can be employed in area operation centers. Thus, the implanted control devices can be regulated in an on-line and wide-area coordinated approach. In this process, efficient objective functions are devised for both voltage profile improvement and power loss reduction. Subsequently, sensitivity analysis is carried out to determine the best weighting factors for these objectives. Extensive numerical studies are conducted on an IEEE 14-bus test system and a real-world system named the Azarbayjan Regional Transmission Network. The obtained results are discussed in detail to highlight the promising improvements.

Study of Optimal Location and Compensation Rate of Thyristor-Controlled Series Capacitor Considering Multi-objective Function

  • Shin, Hee-Sang;Cho, Sung-Min;Kim, Jin-Su;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.428-435
    • /
    • 2013
  • Flexible AC Transmission System (FACTS) application study on enhancing the flexibility of AC power system has continued to make progress. A thyristor-controlled series capacitor (TCSC) is a useful FACTS device that can control the power flow by adjusting line impedances and minimize the loss of power flow and voltage drop in a transmission system by adjusting line impedances. Reduced power flow loss leads to increased loadability, low system loss, and improved stability of the power system. This study proposes the optimal location and compensation rate method for TCSCs, by considering both the power system loss and voltage drop of transmission systems. The proposed method applies a multi-objective function consisting of a minimizing function for power flow loss and voltage drop. The effectiveness of the proposed method is demonstrated using IEEE 14- and a 30-bus system.

볼엔드밀 절삭공정의 절삭력 디지털 제어

  • 이천환;이건복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.198-203
    • /
    • 1992
  • There are two important variables in machining process control, which are feed and cutting speed. It is possible to improve the machining accuracy and the productivity by maintaining the optimal feed and cutting speed. IN this work, a controller is designed to achieve on-line cutting force control based on the modeling of cutting process dynamics established through step response test. Two schemes are proposed and implemented. The first is feed control under the constant spindle speed and the second is spindle speed control under the constant feed. Finally, both are proved to work properly through simulation and experimentation.

Windows Based Programming for Optimal Power Flow Analysis (윈도우환경을 기반으로 한 최적전력조류 프로그램 팩키지 개발)

  • Kim, Kyu-Ho;Rhee, Sang-Bong;Lee, Jae-Gyu;You, Seok-Ku
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.239-242
    • /
    • 2001
  • This paper presents a windows program package for solving security constrained OPF in interconnected power systems, which is based on the combined application of evolutionary programming(EP) and sequential quadratic programming(SQP). The objective functions are the minimization of generation fuel costs and system power losses. The control variables are the active power of the generating units, the voltage magnitude of the generator, transformer tap settings and SVC setting. The state variables are the bus voltage magnitude, the reactive power of the generating unit, line flows and the tie line flow. In OPF considering security, the outages are selected by contingency ranking method. The resulting optimal operating point has to be feasible after outages such as any single line outage(respect of voltage magnitude, reactive power generation and power flow limits). The OPF package proposed is applied to 10 machines 39 buses model system.

  • PDF

A study for IT Based Optimal Voltage Control Method of Distribution Systems with Distributed Generation (IT기반 분산전원 연계 배전계통의 최적전압조정에 관한 연구)

  • Kim, Jung-Nyun;Baek, Young-Sik;Seo, Gyu-Seak
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.4
    • /
    • pp.139-143
    • /
    • 2006
  • Recently, standard of living improved and Information-Communication industry developed rapidly. Thereby, interest about electric power quality is rising worldwide. So, research and Development to enhance electric power quality in various viewpoint until most suitable supply system from each kind device to improve electric power quality. And specially, interest about voltage quality is rising by diffusion increase of information communication appliance and minuteness control appliance etc. Also Power consumption is increasing, but expansion of large size generator by environmental and site security problem is difficult. So, introduction of distribution generation is investigated actively by electric-power industry reorganization. Voltage management of power system had been controlled by ULTC (Under Load Tap Changer) in substation and pole transformer on the high voltage distribution line. But, voltage control device on substation and distribution line is applied each other separatively. Therefore, efficiency of line voltage control equipment is dropping. Also, research about introduction upper limit of distribution generation is consisting continuously. This paper presents cooperation use way between voltage control device and introduction upper limit of distribution generation for most suitable voltage control in distribution power system.

Optimal time control of multiple robot using hopfield neural network (홉필드 신경회로망을 이용한 다중 로보트의 최적 시간 제어)

  • 최영길;이홍기;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.147-151
    • /
    • 1991
  • In this paper a time-optimal path planning scheme for the multiple robot manipulators will be proposed by using hopfield neural network. The time-optimal path planning, which can allow multiple robot system to perform the demanded tasks with a minimum execution time and collision avoidance, may be of consequence to improve the productivity. But most of the methods proposed till now suffers from a significant computational burden and thus limits the on-line application. One way to avoid such a difficulty is to rearrange the problem as MTSP(Multiple Travelling Salesmen Problem) and then apply the Hopfield network technique, which can allow the parallel computation, to the minimum time problem. This paper proposes an approach for solving the time-optimal path planning of the multiple robots by using Hopfield neural network. The effectiveness of the proposed method is demonstrated by computer simulation.

  • PDF