• Title/Summary/Keyword: on-chip current-sensing circuit

Search Result 17, Processing Time 0.021 seconds

A Study on Temperature Dependent Super-junction Power TMOSFET

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.20 no.2
    • /
    • pp.163-166
    • /
    • 2016
  • It is important to operate the driving circuit under the optimal condition through precisely sensing the power consumption causing the temperature made mainly by the MOSFET (metal-oxide semiconductor field-effect transistor) when a BLDC (Brushless Direct Current) motor operates. In this letter, a Super-junction (SJ) power TMOSFET (trench metal-oxide semiconductor field-effect transistor) with an ultra-low specific on-resistance of $0.96m{\Omega}{\cdot}cm^2$ under the same break down voltage of 100 V is designed by using of the SILVACO TCAD 2D device simulator, Atlas, while the specific on-resistance of the traditional power MOSFET has tens of $m{\Omega}{\cdot}cm^2$, which makes the higher power consumption. The SPICE simulation for measuring the power distribution of 25 cells for a chip is carried out, in which a unit cell is a SJ Power TMOSFET with resistor arrays. In addition, the power consumption for each unit cell of SJ Power TMOSFET, considering the number, pattern and position of bonding, is computed and the power distribution for an ANSYS model is obtained, and the SJ Power TMOSFET is designed to make the power of the chip distributed uniformly to guarantee it's reliability.

Core Circuit Technologies for PN-Diode-Cell PRAM

  • Kang, Hee-Bok;Hong, Suk-Kyoung;Hong, Sung-Joo;Sung, Man-Young;Choi, Bok-Gil;Chung, Jin-Yong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.2
    • /
    • pp.128-133
    • /
    • 2008
  • Phase-change random access memory (PRAM) chip cell phase of amorphous state is rapidly changed to crystal state above 160 Celsius degree within several seconds during Infrared (IR) reflow. Thus, on-board programming method is considered for PRAM chip programming. We demonstrated the functional 512Mb PRAM with 90nm technology using several novel core circuits, such as metal-2 line based global row decoding scheme, PN-diode cells based BL discharge (BLDIS) scheme, and PMOS switch based column decoding scheme. The reverse-state standby current of each PRAM cell is near 10 pA range. The total leak current of 512Mb PRAM chip in standby mode on discharging state can be more than 5 mA. Thus in the proposed BLDIS control, all bitlines (BLs) are in floating state in standby mode, then in active mode, the activated BLs are discharged to low level in the early timing of the active period by the short pulse BLDIS control timing operation. In the conventional sense amplifier, the simultaneous switching activation timing operation invokes the large coupling noise between the VSAREF node and the inner amplification nodes of the sense amplifiers. The coupling noise at VSAREF degrades the sensing voltage margin of the conventional sense amplifier. The merit of the proposed sense amplifier is almost removing the coupling noise at VSAREF from sharing with other sense amplifiers.

Fully Digitalized PWM and Vector Control of the Squirrel-Cage Induction Motor (눙형 유도 전동기의 전 디지털화된 PWM 발생 및 벡테제어)

  • 김한태;권봉환
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.6
    • /
    • pp.567-573
    • /
    • 1991
  • Full direct digital control of induction motor driver is implemented with a minimal hardware structure. This paper deals with the presentation of a low-cost single-chip microprocessor-based control system for three-phase PWM generation and vector control that control speed of the induction motor using the field-oriented control method. Rotor flux is estimated using the indirect sensing method based on the rotor circuit equation in the synchronously rotation reference frame, and slip angle and rotor position are calculated from rotor angular velocity and stator current. Through simulation and experiment, it is shown that the proposed scheme gives good static and dynamic performance to the induction motor drive.

  • PDF

A Study on Output Characteristics of the CO2 Laser by DC-DC Converter System (DC-DC Converter System에 의한 CO2 레이저 출력 특성에 대한 연구)

  • Kim, Geun-Yong;Chung, Hyun-Ju;Min, Byoung-Dae;Kim, Yong-Cheol;Lee, Yu-Soo;Kim, Hee-Je
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1816-1819
    • /
    • 2002
  • Nowadays, CO2 lasers are used widely in many applications such as materials fabrication, communications, remote sensing and military purpose etc. It is important to control the laser output power in those fields. In this paper, current resonant half-bridge inverter and Cockcraft-Walton circuit are used to vary the laser output power. This laser power supply is designed and fabricated which has less switching losses and compact size. Also we used an IGBT(Insulated Gate Bipolar Transistor) as a switching device of a power supply and PIC one-chip microprocessor are used to control the gate signal of the IGBT precisely. We investigated the output characteristics of this CO2 laser. As a result, the maximum laser output power of 26[W] is obtained at the resonant frequency of about 13[kHz].

  • PDF

A Study on Output Characteristics of the CO2 Laser with DC-DC Converter System (DC-DC Converter System에 의한 CO2 레이저 출력 특성에 관한 연구)

  • Kim, Geun-Yong;Chung, Hyun-Ju;Min, Byoung-Dae;Kim, Yong-Chul;Lee, Yu-Soo;Kim, Hee-Je
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.176-179
    • /
    • 2002
  • Nowadays, CO2 lasers are used widely in many applications such as materials fabrication. communications, remote sensing and military purpose etc. It is important to control the laser output power in those fields. In this paper, current resonant half-bridge inverter and Cockcraft-Walton circuit are used to vary the laser output power. This laser power supply is designed and fabricated which has less switching losses and compact size. Also we used an IGBT(insulated Gate Bipolar Transistor) as a switching device of a power supply and PIC one-chip microprocessor are used to control the gate signal of the IGBT precisely. We investigated the output characteristics of this CO2 laser. As a result. the maximum laser output power of 26 [W] is obtained at the resonant frequency of about 13 [kHz].

  • PDF

Design of Compensated Digital Interface Circuits for Capacitive Pressure Sensor (용량형 압력센서용 디지탈 보상 인터페이스 회로설계)

  • Lee, Youn-Hee;Sawada, Kouji;Seo, Hee-Don;Choi, Se-Gon
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.63-68
    • /
    • 1996
  • In order to implement the integrated capacitive pressure sensors, which contains integrated interface circuits to detect the electrical output signal, several main factors that have a bad effect on the characteristics of sensors must be improved, such as parasitic capacitance effects, temperature/thermal drift, and the leakage current of a readout circuitry. This paper describes the novel design of the dedicated CMOS readout circuitry that is consists of two capacitance to frequency converters and 4 bit digital logic compensating circuits. Dividing the oscillation frequency of a sensing sensor by that of reference sensor, this circuit is designed to eliminate the thermal/temperature drift and the effect of the leakage currents, and to access a digital signals to obtain a high signal-to-noise(S/N)ratio. Therefore, the resolution of this circuit can be increased by increasing the number of the digital bits. Digital compensated circuits of this circuits, except for the C-F converters, are fabricated on a FPGA chip, and fundamental performance of the circuits are evaluated.

  • PDF

DC-DC integrated LED Driver IC design with power control function (전력 제어 기능을 가진 DC-DC 내장형 LED Driver IC 설계)

  • Lee, Seung-Woo;Lee, Jung-Gi;Kim, Sun-Yeob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.702-708
    • /
    • 2020
  • Recently, as LED display systems have become larger, research on effective power control methods for the systems has been in progress. This paper proposes a power control method to minimize power loss due to the difference in LED characteristics for each channel of a backlight unit (BLU) system. The proposed LED driver IC has a power optimization function and detects the minimum headroom voltage for constant current operation of all channels and linearly controls the DC-DC converter output. Thus, it minimizes power consumption due to unnecessary additional voltage. In addition, it does not require a voltage sensing comparator or a voltage generation circuit for each channel. This has a great advantage in reducing the chip size and for stabilization when implementing an integrated circuit. In order to verify the proposed function, an IC was designed using Cadence and Synopsys' design tools, and it was fabricated with a Magnachip 0.35um 5V/40V CMOS process. The experiments confirmed that the proposed power control method controls the minimum required voltage of the BLU system.