• Title/Summary/Keyword: omnivores

Search Result 39, Processing Time 0.026 seconds

Biomass Estimation Using Length-Weight Regression for the Freshwater Cyclopoida

  • Hye-Ji Oh;Geun-Hyeok Hong;Yerim Choi;Dae-Hee Lee;Hye-Lin Woo;Young-Seuk Park;Yong-Jae Kim;Kwang-Hyeon Chang
    • Korean Journal of Ecology and Environment
    • /
    • v.57 no.2
    • /
    • pp.111-122
    • /
    • 2024
  • Zooplankton biomass is essential for understanding the quantitative structure of lake food webs and for the functional assessment of biotic interactions. In this study, we aimed to propose a biomass (dry weight) estimation method using the body length of cyclopoid copepods. These copepods play an important role as omnivores in lake zooplankton communities and contribute significantly to biomass. We validated several previously proposed estimation equations against direct measurements and compared the suitability of prosomal length versus total length of copepods to suggest a more appropriate estimation equation. After comparing the regression analysis results of various candidate equations with the actual values measured on a microbalance-using the coefficient of variation, mean absolute error, and coefficient of determination-it was determined that the Total Length-DW exponential regression equation [W=0.7775×e2.0183L; W (㎍), L (mm)] could be used to calculate biomass with higher accuracy. However, considering practical issues such as the morphological similarity between species and genera of copepods and the limitations of classifying copepodid stages, we derived a general regression equation for the pooled copepod community rather than a species-specific regression equation.

Fish Fauna and Guild Compositions in Geum River Watershed

  • Lee, Eui-Haeng;Kim, Hyun-Mac;Lee, Jae-Kwan;Byeon, Myeong-Seop;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.490-498
    • /
    • 2008
  • This study was to analyze fish composition and ecological indicator characteristics from eight sampling sites of Geum River, October 2007. Total number of family and species sampled were 9 and 40. The most dominant family was Cyprinidae (27 species, 85%), and then followed by Cobitidae, Odomtobutidae, and Gobiidae. Constancy values of Zacco platypus and Zacco temminckii were 1.00 and 0.30, respectively, and the relative abundance of Acheilognathus koreensis and Pseudogobio esocinus were greater than 5% of the total. The number of Korean endemic species sampled in this Geum River study was 7 family 19 species, which is 47.5% of total 40 species, and endangered species of Pseudopungtungia nigra and Gobiobotia brevibarba were only 0.5% of the total and these species were only distributed within the upstream regions. Exotic species, Micropterus salmoides, which is known as large-mouth bass, were observed in two sites of G3 and G7. Analytical results of fish community showed that community dominance index was 0.19, which is low, and the species evenness index (0.74), diversity index (2.03), and richness index (3.00) appeared high. These results indicate that structure of fish community is stable in the Geum River. According to various guilds analysis, the relative abundance of tolerant and omnivores at all sites were 40% and 47% of the total, respectively. This monitoring data may contribute changes of fish fauna and compositions in relation to habitat modifications and chemical water quality degradations in the future.

Environmental Impact Assessments along with Construction of Residential and Commercial Complex (주거단지 건설이 하천에 미치는 생태영향평가)

  • An, Kwang-Guk;Han, Jeong-Ho;Lee, Jae Hoon
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.5
    • /
    • pp.631-648
    • /
    • 2012
  • The integrative ecological approaches of chemical assessments, physical habitat modelling, and multi-metric biological health modelling were applied to Gwanpyeong Stream within Gap-Stream watersheds to evaluate environmental impacts on the constructions of residential and commercial complex. For the analysis, the surveys conducted from 45 sites of reference streams within the Gap-Stream watershed and 3 regular sites during 2009 - 2010. Physical habitat health, based on the habitat model of Qualitative Habitat Evaluation Index(QHEI) declined from the headwaters(good - fair condition) to the downstream(poor condition). Chemical water quality, based turbidity and electric conductivity(EC), was degraded toward to the downstream, and especially showed abrupt increases, compared to the values of control streams(CS). Also, concentrations of chlorophyll-a in the downstreams were greater compared to the control stream(CS), indicating an eutrophication. Biological health conditions, based on the Index of Biological Integrity(IBI) using fish assemblages, averaged 19.3 which is judged as a fair condition by the biological criteria of the Ministry of Environment, Korea. The comparisons of model metric values in sensitive species and riffle-benthic species on the Maximum Species Richness Line(MSRL) of 45 reference streams indicated a massive disturbances in all sampling locations. Also, tolerance guild and trophic guild analyses suggest that dominances of tolerant species and omnivores were evident, indicating a biological degradation by habitat disturbances and organic matter pollutions. There was no distinct longitudinal variations of IBI model values from the headwater to the downstream in spite of slight chemical and habitat health gradients among the sampling sites. Overall, integrative ecological health(IEH) scores, based on the chemical, physical, and biological parameters, were low compared to the 45 reference streams due to physical and chemical disturbances of massive constructions of the residential and commercial complex. This stream, thus showed a tendency of typical urban streams which are disturbed in the chemical water quality, habitat structures, and biological integrity. Effective stream management plans and restoration strategies are required in this urban stream for improving integrative stream health.

Physiologically Active Fatty Acids their Metabolism and Function (생리활성지방산;그 대사와 기능)

  • Mitsu, Kayama
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.15-24
    • /
    • 1996
  • Essentiality was proposed in the field of lipid by Burr and Burr in 1929. When rats were raised on the fat-free diet, their growth retarded and their skin and tails showed the characteristic deficient symptoms, which were relieved by the addition of ${\omega}6(n-6)$ polyunsaturated fatty acids as linoleic(LA) and arachidonic(AA) acids to the basal diet. LA is dehydrogenated to ${\gamma}-linolenic$ acid(GLNA) by ${\Delta}6$ desaturase, then GLNA is 2 carbon chain elongated by elongase to $dihomo-{\gamma}-linolenic$ acid(DGLNA), which is desaturated by ${\Delta}5$ desaturase to AA. These acids are called LA family or ${\omega}6(n-6)$ polyunsaturated fatty acids(PUFA). ${\alpha}-Linolenic$ acid(ALNA) is converted through the series of desaturation and elongation steps to docosahexaenic acid(DHA) via eicosapentaenoic acid(EPA). These acids belong to ALNA family or ${\omega}3(n-3)$PUFA. Human who consume large amounts of EPA and DHA, which are present in fatty fish and fish oils, have increased levels of these two fatty acids in their plasma and tissue lipids at the expense of LA and AA. Alternately, vegetarians, whose intake of LA in high, have more elevated levels of LA and AA and lower levels of EPA and DHA in plasma lipids and in cell membranes than omnivores. AA and EPA are metabolized to substances called eicosanoids. Those derived form AA are known as prostanocids(prostaglandins and prostacyclins) of the 2-types and leukotrienes of the 4-series, whereas those derived from EPA are known as prostanoids of the 3-types and leukotrienes of the 5-series. DGLNA is a precursor of the 1-types of prostaglandins. The metabolites of AA and EPA have competitive functions. Ingestion of EPA from fish or fish oil replaces AA from membrane phospholipids in practically all cells. So this leads to a more physiological state characterized by the production of proatanoids and leukotrienes that have antithrombic, antichemotactic, antivasoconstrictive and antiinflammatory properties. It is evident that ${\omega}3$ fatty acids can affect a number of chronic diseases through eicosanoids alone.

Radiation Dose Assessment Model for Terrestrial Flora and Fauna and Its Application to the Environment near Fukushima Accident

  • Keum, Dong-Kwon;Jeong, Hyojoon;Jun, In;Lim, Kwang-Muk;Choi, Yong-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.1
    • /
    • pp.16-25
    • /
    • 2020
  • Background: To investigate radiological effects on biota, it is necessary to assess radiation dose for flora and fauna living in a terrestrial ecosystem. This paper presents a dynamic model to assess radioactivity concentration and radiation dose of terrestrial flora and fauna after a nuclear accident. Materials and Methods: Litter, organic soil, mineral soil, trees, wild crops, herbivores, omnivores, and carnivores are considered the major components of a terrestrial ecosystem. The model considers the physicochemical and biological processes of interception, weathering, decomposition of litter, percolation, root uptake, leaching, radioactive decay, and biological loss of animals. The predictive capability of the model was investigated by comparison of its predictions with field data for biota measured in the Fukushima forest area after the Fukushima nuclear accident. Results and Discussion: The predicted radioactive cesium inventories for trees agreed well with those for evergreens and deciduous trees sampled in the Fukushima area. The predicted temporal radioactivity concentrations for animals were within the range of the measured radioactivity concentrations of deer, wild boars, and black bears. The radiation dose for the animals were, for the whole simulation time, estimated to be much smaller than the lower limit (0.1 mGy·d-1) of the derived consideration reference level given by the International Commission on Radiological Protection for terrestrial flora and fauna. This suggested that the radiation effect of the accident on the biota in the Fukushima forest would be insignificant. Conclusion: The present dynamic model can be used effectively to investigate the radiological risk to terrestrial ecosystems following a nuclear accident.

An influence of mesohabitat structures (pool, riffle, and run) and land-use pattern on the index of biological integrity in the Geum River watershed

  • Calderon, Martha S.;An, Kwang-Guk
    • Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.107-119
    • /
    • 2016
  • Background: Previous studies on the biological integrity on habitat and landuse patterns demonstrated ecological stream health in the view of regional or macrohabitat scale, thus ignored the mesoscale habitat patterns of pool, riffle, and runs in the stream health analysis. The objective of this study was to analyze influences on the mesohabitat structures of pool, riffle, and run reaches on the fish guilds and biological integrity in Geum-River Watershed. Results: The mesohabitat structures of pool, riffle, and run reaches influenced the ecological stream health along with some close relations on the fish trophic and tolerance guilds. The mesoscale components altered chemical water quality such as nutrients (TN, TP) and BOD and these, then, determined the primary productions, based on the sestonic chlorophyll-a. The riffle-reach had good chemical conditions, but the pool-reach had nutrient enrichments. The riffle-reach had a predominance of insectivores, while the pool-reach has a predominance of omnivores. Also, the riffle-reach had high proportions of sensitive fish and insectivore fish, and the pool-reach had high proportions of tolerant species in the community composition. The intermediate fish species in tolerance and omnivorous fish species in the food linkage dominated the community in the watershed, and the sensitive and insectivorous fishes decreased rapidly with a degradation of the water quality. All the habitat patterns were largely determined by the land-use patterns in the watershed. Conclusions: Trophic guilds and tolerance guilds of fish were determined by land-use pattern and these determined the stream health, based on the Index of Biological Integrity. This study remarks the necessity to include additional variables to consider information provided by mesohabitats and land-use distributions within the selected stream stretch. Overall, our data suggest that land-use pattern and mesohabitat distribution are important factors to be considered for the trophic and tolerance fish compositions and chemical gradients as well as ecological stream health in the watershed.

Fish Fuana in Southern River of Bukcheong and Brackish Lakes, the Shinpo District, North Korea (북한 신포지구내 북청 남대천과 기수호의 어류상)

  • Gil, Joon-Woo;Hong, Young-Pyo;Kim, Say-Wa
    • Korean Journal of Environmental Biology
    • /
    • v.25 no.3
    • /
    • pp.279-287
    • /
    • 2007
  • The purpose of the study was to introduce the fish fauna and distribution in the Shinpo district, North Korea. Sampling was carried out in October 1997, July 1998, May and October 2002, in sites located in the upstream, middle and down of the southern river of Bukcheong and three brackish lakes of Hommanpo, Daein and Hyunkum, respectively. A total of 29 species belonging to 11 families were found. Family Cyprinidae showed the prosperity in species number, comprising 28% among total species found. No natural monument fishes or rare fishes were captured. Ten commercial species, five anadromous ones and five brackish ones were identified. Feeding guilds was identified as 11 carnivores, 2 herbivores and 7 omnivores. Twenty species belonging to 7 families inhabited in the river, 18 species of 6 families in Lake Homanpo, 21 of 7 in Lake Hyunkum and 23 of 8 in Lake Daein, respectively. Ecological indices of richness, diversity and evenness were highest in Lake Daein and the dominace index was highest in Lake Hyunkum.

A Study on the Fish Community and Various Guilds to Stream Order in Geum River Watershed

  • Lee, Su-Ho;Lee, Jae-Hoon;Han, Jeong-Ho;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.4
    • /
    • pp.503-512
    • /
    • 2010
  • This study was conducted to evaluate fish fauna, species composition, and various guilds against stream orders along with analysis of fish community structure and diversity in Geum River watershed from 2005 to 2007. The total number of fish collected was 4,216 representing 12 families with 56 species. Zacco platypus was the most abundant fish species with 26% in relative abundance (RA). Korean endemic species were 24 species including Zacco koreanus, Microphysogobio yaluensis, Gobiobotia nakdongensis, and Iksookimia koreensis, etc. We also collected endangered fish species such as G. nakdongensis, Liobagrus obesus, and Pseudopungtungia nigra, etc., and their new distribution sites were found in the survey, providing some sites of the fish conservation and protection. Fish tolerance and trophic guilds analysis showed that the proportion of sensitive species, intermediate species, and tolerant species were 33.4%, 29.3%, and 37.3%, respectively and omnivores and insectivores were 48.1 % and 38.4%, respectively. Analysis of site-base study indicated that tolerant species and omnivore species were high in some polluted tributary streams (i.e., Gap and Miho stream) and sensitive and insectivore species were low. In the functional relations, expressed as simple linear regression equations, of stream order on fish metric attributes, showed that the number of species and the number of individuals increased as the stream order increases. This phenomenon was explained by greater availability of stable water volume, rich food, and higher physical habitat capacity. Such guild compositions and stream order characteristics of the river influenced the community structures, based on species diversity, dominance and evenness index in the study. This study may be used as important data in the future for comparisons of fish fauna and compositions before and after two weir (dam) constructions in the middle of Geum River by the government.

Fish Community and Habitat Environmental Characteristics in the Gudam Wetland

  • Chu, Yeounsu;Cho, Kwang-Jin;Kim, Hui-Seong;Moon, Ho-Gyeong;Kim, Han;Choi, Nak-Hyun
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.3 no.1
    • /
    • pp.13-22
    • /
    • 2022
  • In this study, we investigated the water quality and fish community of the Gudam Wetland, a riverine wetland in the middle-upper reaches of the Nakdong River, during March-October 2020. The main results were as follows: average annual flow rate: 45.0±23.7 m3/s, flow velocity: 0.4±0.3 m/s, water depth: 1.4±0.4 m, water temperature: 17.5±0.8℃, pH: 7.8±0.2, electrical conductivity: 121.6±19.0 ㎲/cm, dissolved oxygen concentration: 11.4±0.9 mg/L, suspended solids concentration: 3.8±2.0 mg/L, and the water quality was classified as Ia (very good). A total of 754 individual fish belonging to 4 orders, 7 families, and 19 species were investigated. Cyprinidae was the dominant group, with 13 species. The dominant species was Zacco platypus (39.3%), followed by Pseudogobio esocinus (17.5%). There were 8 (42.1%) endemic Korean species and 1 exotic species, Micropterus salmoides. Four species were carnivores, six were insectivores, and nine were omnivores. Regarding tolerance to environmental changes, 6 species were tolerant, 11 had intermediate tolerance, and 2 were sensitive. Fish community analysis revealed dominance of 0.57, diversity of 2.04, evenness of 0.69, and richness of 2.72, indicating a diverse and stable fish community. The fish assessment index showed that the assessment class was B (average 62.5), which was higher than that of major streams of the Nakdong River (class C). For sustainable conservation of the Gudam Wetland, management strategies such as minimizing aggregate collection and preventing inflow of non-point pollutants are required.

Effect of Stream Channel Naturalness on Aquatic Ecological Health in the Han River, South Korea (한강권역 내 하도 자연성이 어류 건강성에 미치는 영향)

  • Kim, Hyunji;Noh, SeongYu;Jeong, Hyun-Gi;Moon, Jeongsuk;Shin, Yuna;Lee, Kyung-Lak;Lee, Su-Woong;Lee, Jae-Kwan
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.4
    • /
    • pp.311-321
    • /
    • 2018
  • The purpose of this study is to investigate effect of stream channel naturalness on ecological health by using environmental factors and Fish Assessment Index (FAI) in the Han River of South Korea. These samples and data have been released from the research project titled Stream/River Ecosystem Survey and Health Assessment, which was conducted in 444 sites in the Han river watershed from 2008 to 2016. All samples were classified into five groups according to a degree of morphological changes of stream. Water chemistry analyses indicated a decline in water quality by decreasing stream channel naturalness, it is assumed that channelized stream was vulnerable to aquatic pollution compared to the natural meandering stream. In the result of frequency of dominant species, sensitive species and insectivore such as Zacco koreanus, Rhynchocypris kumgangensis and Pungtungia herzi were frequently dominated in the natural meandering stream while tolerant species and omnivores such as Carassius auratus and Cyprinus carpio were more dominated in the channelized streams. The FAI in the channelized stream shows decline to average of $46{\pm}25$ compared with that of the natural meandering stream ($80{\pm}20$). The decrease in FAI was highly influenced by changes in matrixes of fish assemblage structure such as number of sensitive species (M3), portion of omnivores (M5) and insectivores (M6). Moreover, annual average FAIs from 2008 to 2016 were significantly correlated with water chemistry, especially TN, TP and BOD ($r^2=0.59$, p<0.0001). Taken together, all the results suggest that the stream channelization could negatively impact on the water quality and fish assemblage structure, leading to degradation in aquatic ecosystem health.