• Title/Summary/Keyword: oily wastewater treatment

Search Result 18, Processing Time 0.02 seconds

Industrial wastewater treatment by using of membrane

  • Razavi, Seyed Mohammad Reza;Miri, Taghi;Barati, Abolfazl;Nazemian, Mahboobeh;Sepasi, Mohammad
    • Membrane and Water Treatment
    • /
    • v.6 no.6
    • /
    • pp.489-499
    • /
    • 2015
  • In this work, treatment of real hypersaline refinery wastewater by hollow fiber membrane bioreactor coupled with reverse osmosis unit was studied. The ability of HF-MBR and RO developed in this work, was evaluated through examination of the effluent properties under various operating conditions including hydraulic retention time and flux. Arak refinery wastewater was employed as influent of the bioreactor which consists of an immersed ultrafiltation membrane. The HF-MBR/RO was run for 6 months. Average elimination performance of chemical oxygen demand, biological oxygen demand, total suspended solids, volatile suspended solids, total dissolved soild and turbidity were obtained 82%, 89%, 98%, 99%, 99% and 98% respectively. Highly removal performance of oily contaminant, TDS and the complete retention of suspends solids implies good potential of the HF-MBR/RO system for wastewater refinement.

Technology Trend of Oil Treatment for Produced Water by the Patent Analysis (특허분석을 통한 생산수의 오일제거 기술동향 분석)

  • Yoon, Sung-Min;Park, Kun-Yik;Kim, Joo-Yeon;Han, Hye-Jung;Kim, Tae-Il;Kang, Kyung-Seok;Bae, Wi-Sup;Rhee, Young-Woo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.681-687
    • /
    • 2011
  • Produced water from oil production processes is mostly composed of oily wastewater. So, it is important to extract and remove the oil components from the produced water environmentally and in utilizing water resources. Produced water treatment is classified as physical, biological and chemical method. The technology trend of oil treatment for produced water was analyzed based on patent application years, countries, main applicants, and each technologies.

A Review on Zeolite-based Ceramic Membrane for Oil/Water Separation (기름/물 분리를 위한 제올라이트 기반의 세라믹 분리막에 대한 총설)

  • Lee, Joo Yeop;Rajkumar, Patel;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.32 no.2
    • /
    • pp.83-90
    • /
    • 2022
  • Wastewater from refineries and petroleum plant lead to severe environmental pollution. There are various existing processes applied for oily water treatment, but membrane-based technology is one of the most efficient methods. Polymeric membranes prepared from organic materials for the separation of oil in water often face chronic problem of membrane fouling. Inorganic membranes are considered to be more efficient due to longer lifetime than organic membranes. Zeolite membranes have better chemical stability and long-term recyclability. The presence of hydrophilicity enhances the water flux of membrane. Ceramic membranes prepared from zeolites are another efficient class of inorganic membranes applied for oil water separation. This review is focused on oily wastewater separation based on zeolite membrane which classified into two categories, i) neat zeolite and ii) zeolite composites with other materials.

Photodegradation stability study of PVDF- and PEI-based membranes for oily wastewater treatment process

  • Ong, C.S.;Lau, W.J.;Al-anzi, B.;Ismail, A.F.
    • Membrane and Water Treatment
    • /
    • v.8 no.3
    • /
    • pp.211-223
    • /
    • 2017
  • In this work, an attempt was made to compare the effects of UV irradiation on the intrinsic and separation properties of membranes made of two different polymeric materials, i.e., polyvinylidene fluoride (PVDF) and polyetherimide (PEI). The changes on membrane structural morphologies and chemical characteristics upon UV-A exposure (up to 60 h) were studied by FESEM and FTIR, respectively. It was found that cracks and fractures were detected on the PVDF-based membrane surface when the membrane was exposed directly to UV light for up to 60 h. Furthermore, the mechanical strength and thermal stability of irradiated PVDF-based membrane was reported to decrease with increasing UV exposure time. The PEI membrane surface meanwhile remained almost intact throughout the entire UV irradiation process. Filtration experiments showed that the permeate flux of UV-irradiated PVDF membrane was significantly increased from approximately 11 to $16L/m^2.h$ with increasing UV exposure time from zero to 60 h. Oil rejection meanwhile was decreased from 98 to 85%. For the PEI-based membrane, oil rejection of >97% was recorded and its overall structural integrity was marginally affected throughout the entire UV irradiation process. The findings of this work showed that the PEI-based membrane should be considered as the host for photocatalyts incorporation if the membrane was to be used for UV-assisted wastewater treatment process.

Functionalized magnetite / silica nanocomposite for oily wastewater treatment

  • Hakimabadi, Seyfollah Gilak;Ahmadpour, Ali;Mosavian, Mohammad T. Hamed;Bastami, Tahereh Rohani
    • Advances in environmental research
    • /
    • v.4 no.2
    • /
    • pp.69-81
    • /
    • 2015
  • A new magnetite-silica core/shell nanocomposite ($Fe_3O4@nSiO_2@mSiO_2$) was synthesized and functionalized with trimethylchlorosilane (TMCS). The prepared nanocomposite was used for the removal of diesel oil from aqueous media. The characterization of magnetite-silica nanocomposite was studied by X-ray diffraction (XRD), Fourier transform infrared (FTIR), transmission electron microscopy (TEM), surface area measurement, and vibrating sample magnetization (VSM). Results have shown that the desired structure was obtained and surface modification was successfully carried out. FTIR analysis has confirmed the presence of TMCS on the surface of magnetite silica nanocomposites. The low- angle XRD pattern of nanocomposites indicated the mesoscopic structure of silica shell. Furthermore, TEM results have shown the core/shell structure with porous silica shell. Adsorption kinetic studies indicated that the nanocomposite was able to remove 80% of the oil contaminant during 2 h and fit well with the pseudo-second order model. Equilibrium studies at room temperature showed that the experimental data fitted well with Freundlich isotherm. The magnetic property of nanocomposite facilitated the separation of solid phase from aqueous solution.

Preparation and Characterization of $TiO_2$ Membranes for Microfiltration ($TiO_2$ 정밀여과막의 제조 및 특성)

  • 한상욱;최세영;현상훈;조철구;강한규
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.6
    • /
    • pp.700-708
    • /
    • 1996
  • TiO2 membranes for microfiltration were prepared on $\alpha$-alumina support tube by slurry coating. The coating layer was obtained by flowing TiO2 slip on the inner surface of the alumina support. TiO2 membranes were heat-treated at 9$25^{\circ}C$ for 2 hrs. The thickness of the unsupported membrane was about 10${\mu}{\textrm}{m}$. The mean pore diameter of the membranes were 0.09 and 0.15${\mu}{\textrm}{m}$ respectively and the pure water flux was 900~1,200ι/m2.hr at room temperature and 1 bar. For a possible application of oily wastewater treatement an kerosene/wa-ter emulsion was separated in terms of flux and removal efficiency. In 60 min of operating time the flux of TiO2 membranes was 50~100 ι/m2.hr and removal efficiency was over 97% at 3kgf/cm2 of operating pres-sure and 600 ml/min of flow rate. TiO2 membranes could be recycled by reheat treatments at $600^{\circ}C$ for 2 hrs.

  • PDF

Advances in Highly Selective Materials for the Separation of Oil-Water (고선택성 유수분리 소재 기술)

  • Uhm, Sunghyun;Choi, Kwang-Soon;Lee, Donghun
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.141-144
    • /
    • 2019
  • Oil-water separators are commonly used in the oily wastewater treatment for the reuse of water resources. Recently, various approaches have been conducted to design and manipulate the oil-water separator installed with highly functionalized membranes. Membrane technologies should encompass the selectivity, durability, economics and processability of materials, and effective oil water separators be also developed to exhibit the optimal performance of the materials. In this mini-review, we highlight the large scale fabrication of membrane materials and the effective design of oil water separators.

Development of Highly Efficient Oil-Water Separation Materials Utilizing the Self-Bonding and Microstructuring Characteristics of Aluminum Nitride Nanopowders (질화알루미늄 나노분말의 자가 접착과 미세구조화 특성을 활용한 고효율 유수분리 소재 개발)

  • Heon-Ju Choi;Handong Cho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.601-607
    • /
    • 2024
  • The discharge of oily wastewater into water bodies and soil poses a serious hazard to the environment and public health. Various conventional techniques have been employed to treat oil-water mixtures and emulsions; Unfortunately, these approaches are frequently expensive, time-consuming, and unsatisfactory outcomes. Porous materials and adsorbents are commonly used for purification, but their use is limited by low separation efficiencies and the risk of secondary contamination. Recent advancements in nanotechnology have driven the development of innovative materials and technologies for oil-contaminated wastewater treatment. Nanomaterials can offer enhanced oil-water separation properties due to their high surface area and tunable surface chemistry. The fabrication of nanofiber membranes with precise pore sizes and surface properties can further improve separation efficiency. Notably, novel technologies have emerged utilizing nanomaterials with special surface wetting properties, such as superhydrophobicity, to selectively separate oil from oil-water mixtures or emulsions. These special wetting surfaces are promising for high-efficiency oil separation in emulsions and allow the use of materials with relatively large pores, enhancing throughput and separation efficiency. In this study, we introduce a facile and scalable method for fabrication of superhydrophobic-superoleophilic felt fabrics for oil/water mixture and emulsion separation. AlN nanopowders are hydrolyzed to create the desired microstructures, which firmly adhere to the fabric surface without the need for a binder resin, enabling specialized wetting properties. This approach is applicable regardless of the material's size and shape, enabling efficient separation of oil and water from oil-water mixtures and emulsions. The oil-water separation materials proposed in this study exhibit low cost, high scalability, and efficiency, demonstrating their potential for broad industrial applications.