• 제목/요약/키워드: oily contaminant

검색결과 7건 처리시간 0.259초

Floor Slipperiness Effect on the Biomechanical Study of Slips and Falls

  • Myung, Ro-Hae;Smith, James L.;Lee, Soon-Yo
    • 대한산업공학회지
    • /
    • 제22권3호
    • /
    • pp.337-349
    • /
    • 1996
  • A study was conducted to find the possible relationship between slip distance and dynamic coefficient of friction (DCOF) through the biomechanical study of slips and falls using a broader variety of floors and levels of slipperiness than those used before. Four different floor surfaces covering the full range of floor slipperiness (with and without on oil contaminant) were prepared for ten subjects with each walking at a fixed velocity. The results showed that slip distance and heel velocity had a decreasing trend while stride length had a increasing trend as DCOF increased. The contaminant effect overpowered floor slipperiness effect because a higher DCOF surface with oil contaminant created longer slip distance than the lower DCOF with dry floor. Normal gait pattern and suggested heel velocity (10 to 20 cm/sec) were seen on dry floors but abnormally longer stride length and 5 to 10 times faster heel velocity were found an oily floors. In other words, faster heel velocity (greater than 10 to 20 cm/sec) is recommended to measure DCOF on oily floors because the assumption of normal gait was no longer valid.

  • PDF

미끄러져 넘어짐의 생체학적 연구에 있어서 부하이동이 끼치는 영향 (Load Carrying Effect on the Biomechanical Parameters of Slips and Falls)

  • 명노해
    • 대한산업공학회지
    • /
    • 제27권2호
    • /
    • pp.197-202
    • /
    • 2001
  • The biomechanical analysis of the load carrying effect on different floor surfaces has been conducted. Four different floor surfaces were prepared for ten subjects with each walking at a fixed velocity(1.33 m/sec) while carrying five different loads. The results showed that because of the significant interaction effect between floor slipperiness and the load carrying task, the load carrying effect should be analyzed according to different levels of the floor slipperiness, especially contaminant floors. On oily surfaces, slip distance(SD) and heel velocity (HV) increased whereas stride length(SL) decreased as load increased. In other words, significantly longer SD, faster HV, and no normal gait were found as load increased. As a result, a different protocol should be applied to measure floor slipperiness on oily floors as compared to dry surfaces for tribological approach.

  • PDF

LPG 연료계통 부품의 이물질 원인분석에 관한 연구 (A Study on Contaminants Analysis of Components in LPG Fuel System)

  • 김재곤;임의순;정충섭
    • 한국자동차공학회논문집
    • /
    • 제21권3호
    • /
    • pp.126-133
    • /
    • 2013
  • Recently, it was reported that complaints about problems being experienced with the performance of vehicles operating on autogas in Korea. The problem was being assumed due to contaminants in LPG and an oily material which was being deposited in vaporizer, injector in LPG fuel system. This study is focused on the analysis of contaminant of automobile parts on LPG fuel system. The sampling points of contaminants are injectors, fuel filters, vaporizer in automobile equipment and it was also investigated by GC-MS, ICP-AES, SIMDIS and EDS. According to results, it was presumed that this contaminants had been analyzed plasticizers with hydrocarbons with high boiling point, Fe from steel corrosion, greases from gas station.

Functionalized magnetite / silica nanocomposite for oily wastewater treatment

  • Hakimabadi, Seyfollah Gilak;Ahmadpour, Ali;Mosavian, Mohammad T. Hamed;Bastami, Tahereh Rohani
    • Advances in environmental research
    • /
    • 제4권2호
    • /
    • pp.69-81
    • /
    • 2015
  • A new magnetite-silica core/shell nanocomposite ($Fe_3O4@nSiO_2@mSiO_2$) was synthesized and functionalized with trimethylchlorosilane (TMCS). The prepared nanocomposite was used for the removal of diesel oil from aqueous media. The characterization of magnetite-silica nanocomposite was studied by X-ray diffraction (XRD), Fourier transform infrared (FTIR), transmission electron microscopy (TEM), surface area measurement, and vibrating sample magnetization (VSM). Results have shown that the desired structure was obtained and surface modification was successfully carried out. FTIR analysis has confirmed the presence of TMCS on the surface of magnetite silica nanocomposites. The low- angle XRD pattern of nanocomposites indicated the mesoscopic structure of silica shell. Furthermore, TEM results have shown the core/shell structure with porous silica shell. Adsorption kinetic studies indicated that the nanocomposite was able to remove 80% of the oil contaminant during 2 h and fit well with the pseudo-second order model. Equilibrium studies at room temperature showed that the experimental data fitted well with Freundlich isotherm. The magnetic property of nanocomposite facilitated the separation of solid phase from aqueous solution.

Stabilization of oily contaminated clay soils using new materials: Micro and macro structural investigation

  • Ghiyas, Seyed Mohsen Roshan;Bagheripour, Mohammad Hosein
    • Geomechanics and Engineering
    • /
    • 제20권3호
    • /
    • pp.207-220
    • /
    • 2020
  • Clay soils have a big potential to become contaminated with the oil derivatives because they cover a vast area of the earth. The oil derivatives diffusion in the soil lead to soil contamination and changes the physical and mechanical properties of the soil specially clay soils. Soil stabilization by using new material is very important for geotechnical engineers in order to improve the engineering properties of the soil. The main subjects of this research are a- to investigate the effect of the cement and epoxy resin mixtures on the stabilization and on the mechanical parameters as well as the microstructural properties of clay soils contaminated with gasoline and kerosene, b- study on the phenomenon of clay concrete development. Practical engineering indexes such as Unconfined Compressive Strength (UCS), elastic modulus, toughness, elastic and plastic strains are all obtained during the course of experiments and are used to determine the optimum amount of additives (cement and epoxy resin) to reach a practical stabilization method. Microstructural tests were also conducted on the specimens to study the changes in the nature and texture of the soil. Results obtained indicated that by adding epoxy resin to the contaminated soil specimens, the strength and deformational properties are increased from 100 to 1500 times as that of original soils. Further, the UCS of some stabilized specimens reached 40 MPa which exceeded the strength of normal concrete. It is interesting to note that, in contrast to the normal concrete, the strength and deformational properties of such stabilized specimens (including UCS, toughness and strain at failure) are simultaneously increased which further indicate on suitability and applicability of the current stabilization method. It was also observed that increasing cement additive to the soil has negligible effect on the contaminated soils stabilized by epoxy resin. In addition, the epoxy resin showed a very good and satisfactory workability for the weakest and the most sensitive soils contaminated with oil derivatives.

Industrial wastewater treatment by using of membrane

  • Razavi, Seyed Mohammad Reza;Miri, Taghi;Barati, Abolfazl;Nazemian, Mahboobeh;Sepasi, Mohammad
    • Membrane and Water Treatment
    • /
    • 제6권6호
    • /
    • pp.489-499
    • /
    • 2015
  • In this work, treatment of real hypersaline refinery wastewater by hollow fiber membrane bioreactor coupled with reverse osmosis unit was studied. The ability of HF-MBR and RO developed in this work, was evaluated through examination of the effluent properties under various operating conditions including hydraulic retention time and flux. Arak refinery wastewater was employed as influent of the bioreactor which consists of an immersed ultrafiltation membrane. The HF-MBR/RO was run for 6 months. Average elimination performance of chemical oxygen demand, biological oxygen demand, total suspended solids, volatile suspended solids, total dissolved soild and turbidity were obtained 82%, 89%, 98%, 99%, 99% and 98% respectively. Highly removal performance of oily contaminant, TDS and the complete retention of suspends solids implies good potential of the HF-MBR/RO system for wastewater refinement.

드라이아이스 펠렛 세정 장치 및 공정개발 (Development of Equipment and Process on Dry Ice Blasting)

  • 박종수;김호태;김선근
    • 청정기술
    • /
    • 제10권3호
    • /
    • pp.121-130
    • /
    • 2004
  • 액체 탄산의 단열팽창하여 얻은 드라이아이스 snow로부터의 펠렛제조기와 이들 펠렛을 이용한 표면 세정용 블래스팅 장치를 설계 제작하였다. 본 블래스팅 장치는 적은 압력과 적은 량의 공기로도 다양한 오염물질 녹, 기름때, 라커막, 페인트 제거에 강한 세정력을 얻을 수 있었다. 이 때 호퍼 용량은 12 kg이고, 펠렛 분사량은 0-1.2 kg/min 까지 조절이 가능하였다. 드라이아이스 펠렛의 impact는 한계 거리 안에서는 거리에 무관하며, 드라이아이스 분사의 impact stress, 각도 및 질량 속도에 의존하였다. 또한 블래스팅의 세정력은 impact와 대상 물질의 열적 성질 및 표면 조도에 의존하였으며, 유리, 구리, 황동, 강철, 아크릴 기판의 순서로 감소하였다. 그리고 세정 속도는 같은 기판에 붙은 오염물의 경도, 부착력에 의존하였으며 그리스, 에폭시, 페인트 순으로 감소하였다. 사용 중 소음도는 대략 85-100 dBA이었다.

  • PDF