• Title/Summary/Keyword: oil-resistance

Search Result 481, Processing Time 0.027 seconds

Analyzing of the Essential Oil Chemical Constituents in Artemisia lavandulaefolia and its Pharmacological Property on Antibacterial Activity

  • Kim, Kyong-Heon;Kim, Baek-Cheol;Lee, Hwa-Jung;Jeong, Seung-Il;Kim, Hong-Jun;Ju, Young-Sung
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.17 no.3
    • /
    • pp.26-32
    • /
    • 2004
  • Objective: The aim of this work is to investigate the antibacterial activity of the essential oil obtained from Artemisia lavandulaefolia (A. lavandulaefolia), as the development of microbial resistance to antibiotics make it essential to constantly look for new and active compounds effective against pathogenic bacteria. Method: The aerial parts of A. lavandulaefolia (1 kg) were subjected to steam distillation for 3 h, using a modified Clevenger type apparatus in order to obtain essential oil. Diethyl ether was the extracting solvent kept at 25?. The essential oil were analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). The essential oil and the composition were tested for antimicrobial activities against 15 different genera of oral bacteria. Ninety-nine compounds accounting for 94.74$\%$</TEX> of the oil were identified. The main compounds in the oil were 1,8-cineole (5.63$\%$), yomogi alcohol (4.49$\%$), camphor (4.92$\%$), a-caryophyllene (16.10$\%$), trans-a-famesene (5.09$\%$), a-terpineol (3.91$\%$), borneol (5.27$\%$), cis-chrysanthenol (6.98$\%$), and a-humulene oxide (3.33$\%$). The essential oil and its compounds were tested for antimicrobial activity against 10 different genera of oral bacteria. Conclusion: The essential oil of A. lavandulaefolia exhibited considerable inhibitory effects against all obligate anaerobic bacteria (MICs, 0.025 - 0.05 ㎎/ml) tested, while their major compounds demonstrated various degrees of growth inhibition

  • PDF

A Study on Wear Property of Oil Hydraulic Piston Pump Material (유압 피스톤 펌프 소재의 마모 특성에 관한 연구)

  • Kim, Nam-Soek;Kim, Hyun-Soo;Seong, Ki-Yong;Ahn, Seok-Hwan;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.30-34
    • /
    • 2009
  • Oil hydraulic piston pumps are being extensively used in the world, because of simple design, light weight and effective cost etc. An oil hydraulic pump is likely to have serious problems of high leakage, friction and low energy efficiency according to large time use. In the oil hydraulic piston pumps the clearance between the valve block and piston plays an important role for volumetric and overall efficiency. In this paper, the wear property of the SACM645 material used the hydraulic piston pump has been work out by experimentation with variable heat treatment. To investigate the effect according to the piston surface condition, seven different types specimen were prepared. From the wear test results, induction hardening and nitration were definitely superior to the others. On the whole, nitration was estimated for high strength material to wear resistance.

A Study on Surface Roughness of Aluminum 7075 to Nose Radius and Cooling Method in CNC Lathe Machining (CNC선반가공에서 노오즈 반경과 냉각방법에 따른 알루미늄7075의 표면 거칠기에 관한 연구)

  • Noh, Young-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.85-91
    • /
    • 2015
  • Current world aircraft industry studies on the precision of the product are in active progress. Particularly in terms of improving the quality of processed products in terms of the surface roughness of the dimensional accuracy, fatigue strength, and corrosion resistance, which affect a lot of research on surface roughness, has been investigated. In this study of aluminum alloy, 7075 aircraft aluminum is used in a cutting CNC lathe machine for the cutting speed and feed rate according to the cutting experiments that were conducted. Additionally, the machine tool of the cooling method soluble cutting oil, insoluble cutting oil by cooling, and cooling the workpiece by cutting surface roughness will be investigated. Through the method and soluble cutting oil coolant cooled by the cutting speed increases, the value of surface roughness showed a regular result. Tool nose radius of 0.8 mm than 0.4 mm picture of when approximately 50 of the surface roughness values were less.

The Effect of a Sealed Cover and POSS-type Cutting Oil on MQL Drilling (MQL드릴링 가공에서 밀폐커버와 타입 절삭유의 효과)

  • Park, Ki-Beom;Cho, Young-Tae;Chin, Dong-Soo;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.77-82
    • /
    • 2016
  • When drilling through Inconel 601 nickel-chromium-based alloys, a large amount of cutting oil is required to prevent tools from wear and fracturing due to heat buildup resulting from the high temperature resistance and toughness of this alloy. However, cutting oil supply has become a factor compromising the machining environment, and this has caused attention to shift to a more environmentally friendly cutting fluid supply system called minimum quantity lubrication (MQL). Our aim in this study was to find a more efficient drill processing method using MQL, and to verify its performance. To that end, we proposed a sealed cover, a step feed, and POSS-type cutting oil as measures to increase the effectiveness of MQL in view of the cutting force and tool wear, and established an improvement in efficiency using the proposed measures.

Development of Superfinishing Machine to Polish the Inner Surfaces of Aircraft Hydraulic Oil Reservoirs (항공기 유압유 저장조 내면연마를 위한 슈퍼피니싱 장치 개발에 관한 연구)

  • Choi, Su Hyun;Kong, Kwang Ju;Cho, Young Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.110-116
    • /
    • 2020
  • Aircraft hydraulic oil reservoirs made with aluminum 7075 have an anodized coating to enable airtightness and corrosion resistance. To maintain a stable oil pressure, the internal surface roughness of the reservoir should be less than approximately 0.2 ㎛. To this end, precision polishing must be performed. However, ensuring the processing quality is challenging, as most polishing operations are performed manually, owing to which, the inner surface roughness is not uniform, and the product quality is irregular. Therefore, we developed a special superfinishing machine to realize the efficient inner polishing of an aircraft hydraulic oil reservoir, by using an abrasive film to improve the process throughput and uniformity. In the experiment involving the superfinishing of an anodized aluminum 7075 cylinder specimen by using the proposed machine, a higher surface roughness than that achieved in the repetitive manual polishing process could be realized.

Investigation of Soil and Groundwater Contaminated by Gasoline and Lubricants Around a Railroad Station in S City, Korea

  • Lee, Hwan;Lee, Yoonjin
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.6
    • /
    • pp.529-540
    • /
    • 2012
  • Objective: This research was performed to evaluate the state of oil pollution in an area surrounding a railway station that has over 100 years of business history as a railway station in S City, Korea. The amount of polluted soil was estimated, and the target area for remediation was assessed in this study to restore the oil-polluted area. Methods: To accomplish this aim, five observation wells were installed for the sampling of groundwater, and soil was sampled at 33 points. Electric resistance studies and a trench investigation were undertaken to understand the geological conditions of the site, and the groundwater movement in this area was simulated by MODFLOW. Physiochemical analyses were conducted to determine the quality of the groundwater and the current state of oil pollution influenced by that of the soil. Results: The mean level of total petroleum hydrocarbons (TPHs) in this area was 1,059 mg/kg, and the area for remediation was determined to be 7,610 mg/kg. Levels of benzene, toluene, ethylbenzene, and xylene (BTEX) were determined to be under the legal standard. Conclusion: In terms of depth, the biggest area polluted by TPH found was between 0 and 1 m from ground level, and the affected area was 5,900 $m^3$. TPHs were not detected in groundwater. Diesel and lubricating oil were the main causes of TPH pollution at this railway station.

Development and Properties of Rubber Sheet using Thermoplastic Elastomer (열가소성 고무를 사용한 RUBBER SHEET의 제조 및 물성)

  • Chun, Seung-Han;Han, Min-Hyeon;Mun, Il-Sik
    • Elastomers and Composites
    • /
    • v.38 no.2
    • /
    • pp.122-127
    • /
    • 2003
  • Compounding, using such thermoplastic elastomer as styrene-ethylene-butadiene-styrene (SEBS) blended with polypropylene(PP), oil, and other ingredients, was studied to develop a new material with excellent impact resistance and resilience for the replacement of environmentally toxic PVC sheet. Hardness decreased linearly with oil content in the SEBS/oil blend, and the tensile strength increased with PP content whereas elongation showed no effects over 50 phr of PP in SEBS/oil/PP blend. In the practical SEBS composition, proposed to replace the PVC sheet material, tensile and tear strength, as well as hardness, increased proportionally with PP content, while melt index decreased.

Hygroscopicity and Ultraviolet (UV) Deterioration Characteristics of Finished Woods

  • KIM, Ji-Yeol;KIM, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.471-481
    • /
    • 2021
  • This study investigated the hygroscopicity and UV deterioration characteristics of 3 domestic and 4 imported woods using natural oil, stain, and varnish paints. In terms of hygroscopicity, it was found that the hygroscopicity of the painted wood was lower than that of the unpainted wood, and that as the number of coatings increased, the hygroscopicity decreased. In terms of anti-absorption, oil-based chemical paints showed higher resistance than water-based paints, and natural oils showed results comparable to oil-based paints. As for the UV deterioration, the amount of color change of the painted wood was lower than that of the unpainted wood, and there was no significant difference according to the number of times of painting. The amount of color change was found to be low in oil-based paints and hardwoods. Through this study, we confirmed effective moisture blocking and small color changes during painting using paints, and it is believed that wood can be protected from internal and external defects through selective and efficient painting based on data for excellent painting performance.

Antibacterial Effect of Eucalyptus Oil, Tea Tree Oil, Grapefruit Seed Extract, Potassium Sorbate, and Lactic Acid for the development of Feminine Cleansers

  • Yuk, Young Sam
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.82-92
    • /
    • 2021
  • Purpose: It has been reported that the diversity and abundance of microbes in the vagina decrease due to the use of antimicrobial agents, and the high recurrence rate of female vaginitis due to this suggests that a new treatment is needed. Methods: In the experiment, we detected that 10% potassium sorbate solution, 1% eucalyptus oil solution, 1% tea tree oil solution, 400 µL/10 mL grapefruit seed extract solution, 100% lactic acid, 10% acetic acid solution, and 10% lactic acid solution were prepared and used. After adjusting the pH to 4, 5, and 6 with lactic acid and acetic acid in the mixed culture medium, each bacterium was inoculated into the medium and incubated for 72 h at 35℃. Incubate and 0 h each. 24 h. 48 h. The number of bacteria was measured after 72 h. Results: In the mixed culture test between lactic acid bacteria and pathogenic microorganisms, lactic acid bacteria showed good results at pH 5-5.5. Potassium sorbate, which has varying antibacterial activity based on the pH, killed pathogenic bacteria and allowed lactic acid bacteria to survive at pH 5.5. Conclusion: The formulation ratio obtained through this study could be used for the development of a feminine cleanser that can be used as a substitute for antibacterial agents. Further, the findings of this study may be able to solve the problem of antimicrobial resistance in the future.

Essential oil impregnation into graphene sponges with electric desorption control

  • Mendez, Jose Antonio Cabello;Bueno, Jose de Jesus Perez;Valencia, Jorge Ivan Mendoza;Soto, Jonathan Soto;Lopez, Maria Luisa Mendoza;Guerrero, Mizraim Uriel Flores
    • Advances in nano research
    • /
    • v.12 no.6
    • /
    • pp.629-638
    • /
    • 2022
  • This work shows the impregnation of scents using a graphene sponge (GS). This was functionalized by the modified Hummers method, pursuing to add different functional groups. It is proposed to achieve the release and seek to control it through electrical potential applied to the graphene sponge with essential oils. The graphene sponge was functionalized and steeped with two kinds of oil. The electrochemical study demonstrates the variation in the electrochemical behaviour of the functionalized graphene sponge without and impregnated with oil. The release of the oil and its aromatic scents was carried out by applying an electrical potential of 30 V, with a release rate of 1.86 mg/min. The heating of the sample that causes the release of oil, associated with the electrical resistance of the system, reaches temperatures of about 150℃. The essential oils, graphene sponge, surfactant, graphene sponge with essential oils, graphene sponge recuperated after applying electric potential, graphene sponge recovered by temperature and dipropylene glycol (DPG) were characterized using Fourier transformed infrared spectroscopy (FTIR), digital microscopy, and x-ray photoelectron spectroscopy (XPS).