• Title/Summary/Keyword: oil yield

Search Result 761, Processing Time 0.023 seconds

Interactive Effect of Nitrogen and Sulphur on Yield and Quality of Groundnut (Arachis hypogea L.)

  • Jamal Arshad;Fazli Inayat Saleem;Ahmad Saif;Abdin Malik Zainul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.6
    • /
    • pp.519-522
    • /
    • 2006
  • Randomized field experiments were conducted to study the interactive effect of sulphur (S) and nitrogen (N) on seed, oil and protein yield of two cultivars of groundnut {Arachis hypogea: cv Amber $(V_{1})$: cv Kaushal, $(V_{2})$.} Two dosage levels of sulphur ($0\;and\;20kg\;ha^{-1}$) and two dosage levels of N ($23.5\;and\;43.5kg\;ha^{-1}$) in various combinations were tested as micronutrient treatments, $T_{1},\;T_{2},\;and\;T_{3}$. Results indicated significant enhancement of the yield components namely seed and oil yield as well as seed protein. Maximum response was observed with treatment $T_{3}$(having 20kg S and 43.5kg N $ha^{-1})$. Increase in seed and oil yields of 90% and 103% in $V_{1}$, and 79 and 90% in $V_{2}$, respectively were recorded as compared to the control treatment $T_{1}$(having 0kg S and 23.5kg N $ha^{-1}$). Effect of S and N interaction was observed on protein, N and S content in seeds. The results obtained by these experiments clearly suggest that judicious balanced application of N and S could improve the yield.

GENOTYPIC AND PHENOTYPIC CORRELATIONS IN A SOYBEAN CROSS

  • Shin-Han Kwon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.1 no.1
    • /
    • pp.42-45
    • /
    • 1963
  • In a plant breeding program, an efficient selection of desired characters in a population is important. Generally, many agronomic characters in a given population are determined by polygenes and quantitatively inherited. In practice, the genetic relationship between two observed characters which are undoubtedly subjected to the environmental influence is difficult to identify. In recent years, many workers have attempted to understant the genetic relationship between characters in terms of genotypic correlation, and the knowledge thus gained should furnish many important and useful information for the planning of breeding, selection, and interpretation of the result. The genotypic correlation is the result of pleiotropy, linkage of genes(2, 3, 5, 6, 8) and natural or artificial selection(4). The purposes of this study were to estimate genotyric and phenotypic correlations between all possible pairs of nine characters. and to seek certain characters which may be useful as indicators of certain important agronomic characters. Weber and Moorthy(10), Johnson et al. (5) and Sheth(7) found that in general, the genotypic correlations were higher than the phenotypic correlations. Weiss et al. (11) obtained significant positive correlations between maturity and oil content, maturity and low protein content, and high protein content and low oil content. Weber and Moorthy(10) reported the positive genotypic correlations between flowering and maturity, yield and maturity, yield and plant height, yield and seed weight, and negative genotypic correlations between maturity and oil content, and oil content and seed weight. Johnson et al. (5) studied the genotypic and phenotypic correlations among 24 characters and concluded that selection based entirely on a long fruiting period, lateness, heavy seed, low protein, high oil and resistance to lodging would be effective in increasing yield. Sheth(7) found the following positive associations among characters; height and maturity, yield and lodging, low protein content and high oil content, and yield and low protein content. Hanson et al.(1) also reported high negative correlation between seed yield and protein content.

  • PDF

Optimized biodiesel yield in a hydrodynamic cavitation reactor using response surface methodology

  • Neeraj Budhraja;R.S. Mishra
    • Advances in Energy Research
    • /
    • v.8 no.4
    • /
    • pp.233-241
    • /
    • 2022
  • Biodiesel is a non-polluting and non-toxic energy source that can replace conventional diesel. However, the higher production cost and raw material scarcity became challenges that obstruct the commercialization of biodiesel production. In the current investigation, fried cooking oil is used for biodiesel production in a hydrodynamic cavitation reactor, thus enhancing raw material availability and helping better waste oil disposal. However, due to the cavitation effect inside the reactor, the hydrodynamic cavitation reactor can give biodiesel yield above 98%. Thus, the use of orifice plates (having a different number of holes for cavitation) in the reactor shows more than 90% biodiesel yield within 10 mins of a time interval. The effects of rising temperature at different molar ratios are also investigated. The five-hole plate achieves the highest yield for a 4.5:1 molar ratio at 65℃. And the similar result is predicted by the response surface methodology model; however, the optimized yield is obtained at 60℃. The investigation will help understand the effect of hydrodynamic cavitation on biodiesel yield at different molar ratios and elevated temperatures.

Effect of Sulphur and Nitrogen Application on Growth Characteristics, Seed and Oil Yields of Soybean Cultivars

  • Jamal Arshad;Fazli Inayat Saleem;Ahmad Saif;Abdin Malik Zainul;Yun Song Joong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.5
    • /
    • pp.340-345
    • /
    • 2005
  • A field experiment was conducted to assess the growth characteristics, seed and oil yield of two cultivars of soybean (G max (L.) Merr.) cv. PK-416 ($V_1$) and cv. PK-1024 ($V_2$) in relation to sulphur and nitrogen nutrition. Six combinations ($T_1-T_6$) of two levels of sulphur (0 and 40 kg $ha^{-1}$) and two levels of nitrogen (23.5 and 43.5 kg $ha^{-1}$) were applied to the two soybean cultivars as nutrients. Results indicated significant effect of sulphur and nitrogen, when applied together, on the growth characteristics, yield components, and seed and oil yield. Maximum response was observed with treatment $T_6$ (having 40 kg S and 43.5 kg N $ha^{-1}$). Seed and Oil yields were increased 90 and $102\%$ in $V_1$> and 104 and $123\%$ in $V_2$, respectively as compared to the control i.e. $T_1$ (having 0 kg S and 23.5 kg N $ha^{-1}$). Positive responses of S and N interaction on leaf area index, leaf area duration, crop growth rate and biomass production were also observed. The results obtained in these experiments clearly suggest that balanced and judicious application of nitrogen and sulphur can improve both seed and oil yield of soybean cultivars by enhancing their growth.

Liquefaction Characteristics in Supercritical Decomposition and Extraction of Used Automotive Tire (초임계유체에 의한 폐타이어 분해와 추출에서 오일화의 특성)

  • Kang, W.S.;Kim, J.K.;Kim, I.S.;Park, P.W.
    • Elastomers and Composites
    • /
    • v.34 no.4
    • /
    • pp.350-359
    • /
    • 1999
  • Conversion and oil-yield of a used automotive tire sample in supercritical decomposition and extraction for three solvents such as water, 28% ammoina solution and ammonia, were compared. Supercritical extraction with ammonia gave the highest conversion and oil-yield at the same temperature and pressure. In this paper, supercritical ammonia was used as major solvent and tetralin acting as hydrogen-donor, was used as cosolvent. As the amount of tetralin increased, oil-yield was Increased. When a tire sample was extracted by supercritical ammonia, oil-yield was 48.8% at $280^{\circ}C$, 22.3MPa. But when the weight ratio of tetralin to tire sample (weight of tetralin/weight of tire sample) was 5, oil-yield was 61.2% at $280^{\circ}C$ and 22.3 MPa. These phenomena indicate that as radicals produced in supercritical decomposition become stable, the polymerization and the second decomposition of products may be inhibited. Supercritical extraction of a tire sample swollen by tetralin gave high oil-yield although the amount of tetralin was a little.

  • PDF

Effect of Supplementation of Fish and Canola Oil in the Diet on Milk Fatty Acid Composition in Early Lactating Holstein Cows

  • Vafa, Toktam S.;Naserian, Abbas A.;Moussavi, Ali R. Heravi;Valizadeh, Reza;Mesgaran, Mohsen Danesh
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.3
    • /
    • pp.311-319
    • /
    • 2012
  • This study examined the effects of supplementation of fish oil and canola oil in the diet on milk yield, milk components and fatty acid composition of Holstein dairy cows in early lactation. Eight multiparous early lactation Holstein cows ($42{\pm}12$ DIM, $40{\pm}6kg$ daily milk yield) were fed a total mixed ration supplemented with either 0% oil (Control), 2% fish oil (FO), 1% canola oil +1% fish oil (FOCO), or 2% canola oil (CO) according to a double $4{\times}4$ Latin square design. Each period lasted 3 wk; experimental analyses were restricted to the last week of each period. Supplemental oils were added to a basal diet which was formulated according to NRC (2001) and consisted of 20% alfalfa, 20% corn silage and 60% concentrate. Milk yield was similar between diets (p>0.05), but dry matter intake (DMI) was lower (p<0.05) in cows fed FO diet compared to other diets. Milk fat percentage and daily yield decreased (p<0.01) with the supplementation of fish and canola oil. The daily yield and percentage of milk protein, lactose and solids-not-fat (SNF) were not affected by diets (p>0.05). The proportion (g/100 g fatty acids) of short chain fatty acids (SCFA) decreased and polyunsaturated fatty acids (PUFA) increased (p<0.05) in milk of all cows fed diets supplemented with oil. The proportions of 6:0, 8:0, 10:0 12:0 and 14:0 fatty acids in milk fat decreased (p<0.01) for all diets supplemented with oil, but the proportions of 14:1, 16:0 and 16:1 fatty acids were not affected by diets (p>0.05). The proportion of trans(t)-18:1 increased (p<0.01) in milk fat of cows fed FO and FOCO diets, but CO diet had the highest proportion of cis(c)-11 18:1 (p<0.01). The concentration of t-10, c-12 18:2, c-9 t-11 18:2, 18:3, eicosapentaenoic acid (EPA, 20:5) and docosahexaenoic acid (DHA, 22:6) increased (p<0.05) in FO and FOCO diets in comparison with the other two diets. These data indicate that including fish oil in combination with canola oil significantly modifies the fatty acid composition of milk.

Apparatus for Monitoring Oil Oxidation Using a Plurality of UV Fluorescence Light-reflecting Members (복수 경로를 지닌 자외선 형광측정기를 이용한 오일 산화도 측정장치)

  • Kong, H.;Han, H.G.;Markava, L.V.
    • Tribology and Lubricants
    • /
    • v.26 no.3
    • /
    • pp.167-174
    • /
    • 2010
  • An apparatus for measuring oil oxidation was developed, which is capable of being mounted to mechanical devices for detecting power of fluorescent light reflected from oil in real time as an indication of the oil oxidation. This device has an advantage over conventional fluorescence spectrometers where the thin film is required for the measurement. Clean and used oil samples (mineral and synthetic oils) were tested by the developed apparatus that calculates a fluorescence quantum yield and a light absorption coefficient of the oil based upon the signals from the two light-receiving members and evaluates the degree of oil oxidation of test oils based on the fluorescence quantum yield. Results generally show that the developed device is able to effectively evaluate oil oxidation characteristics on-site in the field.

Shaking table test and numerical analysis of a combined energy dissipation system with metallic yield dampers and oil dampers

  • Zhou, Qiang;Lu, Xilin
    • Structural Engineering and Mechanics
    • /
    • v.17 no.2
    • /
    • pp.187-201
    • /
    • 2004
  • A shaking table test on a three-story one-bay steel frame model with metallic yield dampers and their parallel connection with oil dampers is carried out to study the dynamic characteristics and seismic performance of the energy dissipation system. It is found from the test that the combined energy dissipation system has favorable reducing vibration effects on structural displacement, and the structural peak acceleration can not evidently be reduced under small intensity seismic excitations, but in most cases the vibration reduction effect is very good under large intensity seismic excitations. Test results also show that stiffness of the energy dissipation devices should match their damping. Dynamic analysis method and mechanics models of these two dampers are proposed. In the analysis method, the force-displacement relationship of the metallic yield damper is represented by an elastic perfectly plastic model, and the behavior of the oil damper is simulated by a velocity and displacement relative model in which the contributions of the oil damper to the damping force and stiffness of the system are considered. Validity of the analytical model and the method is verified through comparison between the results of the shaking table test and numerical analysis.

Determination of pressure-Dependent Yield . Criterion for Polymeric Foams (폴리머 폼 재료의 정수압 종속 항복조건 결정에 관한 연구)

  • 김영민;강신일
    • Transactions of Materials Processing
    • /
    • v.11 no.1
    • /
    • pp.69-74
    • /
    • 2002
  • In addition to lightweight and moldable characteristics, polymeric foams possess an excellent energy absorbing capability that can be utilize for a wide range of commercial applications, especially in the crashworthiness of the automobiles. The purpose of the present study is to develop experimental methodology to characterize the pressure dependent yield behavior of the energy absorbing polymeric foams. For the compression test in a triaxial stress sate, a specially designed device was placed in a hydraulic press to produce and control oil pressure. For the test material, the polyurethane foams of two different densities were used. The displacement of the specimen, the load subjected to the specimen, and oil pressure applied to the specimen were measured and controlled. Stress strain curves and yield stresses for the four different oil pressure were obtained. It was found from the present experiments that the polyurethane foams exhibited significant increases in yield stress with applied pressure or mean normal stress. Based on this observation, a yield criteria which included the effect of the stress invariant were established for the polymeric foams. The obtained experimental constants which constituted the pressure-dependent yield criterion were verified.

Statistical Optimization of Biosurfactant Production from Aspergillus niger SA1 Fermentation Process and Mathematical Modeling

  • Mansour A. Al-hazmi;Tarek A. A. Moussa;Nuha M. Alhazmi
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1238-1249
    • /
    • 2023
  • In this study, we sought to investigate the production and optimization of biosurfactants by soil fungi isolated from petroleum oil-contaminated soil in Saudi Arabia. Forty-four fungal isolates were isolated from ten petroleum oil-contaminated soil samples. All isolates were identified using the internal transcribed spacer (ITS) region, and biosurfactant screening showed that thirty-nine of the isolates were positive. Aspergillus niger SA1 was the highest biosurfactant producer, demonstrating surface tension, drop collapsing, oil displacement, and an emulsification index (E24) of 35.8 mN/m, 0.55 cm, 6.7 cm, and 70%, respectively. This isolate was therefore selected for biosurfactant optimization using the Fit Group model. The biosurfactant yield was increased 1.22 times higher than in the nonoptimized medium (8.02 g/l) under conditions of pH 6, temperature 35℃, waste frying oil (5.5 g), agitation rate of 200 rpm, and an incubation period of 7 days. Model significance and fitness analysis had an RMSE score of 0.852 and a p-value of 0.0016. The biosurfactant activities were surface tension (35.8 mN/m), drop collapsing (0.7 cm), oil displacement (4.5 cm), and E24 (65.0%). The time course of biosurfactant production was a growth-associated phase. The main outputs of the mathematical model for biomass yield were Yx/s (1.18), and µmax (0.0306) for biosurfactant yield was Yp/s (1.87) and Yp/x (2.51); for waste frying oil consumption the So was 55 g/l, and Ke was 2.56. To verify the model's accuracy, percentage errors between biomass and biosurfactant yields were determined by experimental work and calculated using model equations. The average error of biomass yield was 2.68%, and the average error percentage of biosurfactant yield was 3.39%.