• Title/Summary/Keyword: oil resistance

Search Result 480, Processing Time 0.023 seconds

Study on Cold/Oil Atmosphere Resistance Property of Face Seal Rubber for Track Layer

  • Shin, Jae Won
    • Elastomers and Composites
    • /
    • v.53 no.1
    • /
    • pp.13-18
    • /
    • 2018
  • A face seal comprising a metal ring and acrylonitrile butadiene rubber (NBR) was installed in the driving part and suspension unit. The seal serves as a bearing and simultaneously prevents entry of foreign matter from external environment as well as internal oil leakage. Subsequently, the rubber-rod ring generates axial pressure owing to rubber elasticity (hardness), performs static sealing function between housing details and outer diameter of seal, and transmits rotational torque to the rotating support ring. In order to improve the durability of NBR, which performs the above tasks, and to effectively use it in tracked-vehicle applications at extreme temperatures, this study reports a mixing design approach to enhance cold and oil resistances of NBR.

Effect of Molecular Weight of Epoxidized Liquid Isoprene Rubber as a Processing aid on the Vulcanizate Structure of Silica Filled NR Compounds

  • Ryu, Gyeongchan;Kim, Donghyuk;Song, Sanghoon;Hwang, Kiwon;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.56 no.4
    • /
    • pp.223-233
    • /
    • 2021
  • In this study, epoxidized liquid isoprene rubber (E-LqIR) was used as a processing aid in a silica-filled natural rubber compound to improve the fuel efficiency, abrasion resistance, and oil migration problems of truck and bus radial tire tread. The wear resistance, fuel efficiency, and extraction resistance of the compound were evaluated according to the molecular weight of E-LqIR. Results of the evaluation showed that the E-LqIR compound had a lower chemical crosslink density than that of a treated distillate aromatic extract (TDAE) oil compound because of the sulfur consumption of E-LqIR. However, the filler-rubber interaction improved because of the reaction of E-LqIR with silica and crosslink with the base rubber by sulfur. As the molecular weight of E-LqIR increased, crosslink with sulfur was facilitated, and the filler-rubber interaction improved, resulting in improved abrasion resistance. The fuel efficiency performance of the E-LqIR compound was poorer than that of the TDAE oil compound because of the low chemical crosslink density and hysteresis loss at the free chain end of E-LqIR. However, the fuel efficiency performance improved as the molecular weight of E-LqIR increased.

Effects of Hydroxy Silicone Oil on Insulation Properties of Silicone Rubber(1) (Hydroxy Silicone Oil이 실리콘 고무의 절연특성에 미치는 영향(1))

  • 강동필;박효열;안명상;이웅재;이후범;오세호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.11
    • /
    • pp.1001-1007
    • /
    • 2003
  • The silicone fluids have been generally used as processing agent in silicone rubber(SIR) compounding. The addition of hydroxy silicone (HS) fluids to SIR for insulator housing material is required to meet the good electrical performance and the good processability. In this study, SIR with HS fluids was evaluated to investigate how the kinds of them affect insulation properties. The contact angle of the virgin sample of 40-HS SIR was low and its recovery rate was also slow. The recovery rate of 50-HS SIR was the highest being decreased with the viscosity increase of HS fluids. The tracking resistances and the corona aging resistance of 70-HS SIR and 1,040-HS SIR were excellent Tracking resistance depended largely on heat resistance of silicone fluids. But arc resistance didn't depend merely on the kind of silicone fluids.

Ultrafiltration of oil-in-water emulsion: Analysis of fouling mechanism

  • Chakrabarty, B.;Ghoshal, A.K.;Purkait, M.K.
    • Membrane and Water Treatment
    • /
    • v.1 no.4
    • /
    • pp.297-316
    • /
    • 2010
  • Membrane fouling is one of the major operational concerns of membrane processes which results in loss of productivity. This paper investigates the ultrafiltration (UF) results of synthetic oil-in-water (o/w) emulsion using flat sheets of polysulfone (PSf) membrane synthesized with four different compositions. The aim is to identify the mechanisms responsible for the observed permeate flux reduction with time for different PSf membranes. The experiments were carried out at four transmembrane pressures i.e., 68.9 kPa, 103.4 kPa, 137.9 kPa and 172.4 kPa. Three initial oil concentrations i.e., 75 $mgL^{-1}$, 100 $mgL^{-1}$ and 200 $mgL^{-1}$ were considered. The resistance-in-series (RIS) model was applied to interpret the data and on that basis, the individual resistances were evaluated. The significances of these resistances were studied in relation to parameters, namely, transmembrane pressure and initial oil concentration. The total resistance to permeate flow is found to increase with increase in both transmembrane pressure and initial oil concentration while for higher oil concentration, resistance due to concentration polarization is found to be the prevailing resistance. The applicability of the constant pressure filtration models to the experimental data was also tested to explain the blocking process. The study shows that intermediate pore blocking is the dominant mechanism at the initial period of UF while in the later period, the fouling process is found to approach cake filtration like mechanism. However, the duration of pore blocking mechanism is different for different membranes depending on their morphological and permeation properties.

The Effects of Water-and Oil-Repellent Finishes on the Surface Characteristics of Polyester Fabrics (발수발유 가공처리가 폴리에스테르 직물의 표면 특성에 미치는 영향)

  • 하희정
    • Journal of the Korean Home Economics Association
    • /
    • v.35 no.3
    • /
    • pp.275-286
    • /
    • 1997
  • The effects of water-and oil-repellent finishes on the surface characteristics of polyester fabrics were investigated in this study. Three kinds of fluoropolyment were selected as water=and oil-repellent finishing agents. The effects of water-and oil-repellent finishes were determined by the water repellency and oil repellency. The surface properties of untreated and treated polyester fabrics were evaluated with respects to crease resistance, contact angle and wicking time. The results of this study were as follows: 1. The polyester fabrics treated with fluoropolymers showed much higher water repellency and oil repellency than those of untreated polyester fabrics. Water-and oil-repellency of fabrics were increased with the crystallinity and the hydrophobic-hydrophillic components of fluoropolymers. 2. Water repellency of fabrics treated with fluoropolymer with hydrophobic components was the highest. Oil repellency of fabrics treated with fluoropolymer with high crystallinity was the highest. Water-and oil-repellency of fabrics treated with fluoropolymer with hydrophyllic components was low comparatively. 3. The crease resistance of polyester fabrics treated with fluoropolymer nearly approached to that of untreated polyester fabric. 4. The water-and oil-repellent finishes improved contact angle markedly. Especially the contact angle of ployester fabric treated with fluropolymer with hydrophobic component was the biggest. 5. The wicking time of polyester fabric treated with fluropolymer with hydrophobic component was the longest.

  • PDF

Flame Retardant Performance of Functional Oil Stains According to the Mixing Ratio of Inorganic Flame Retardants and Phosphorus Flame Retardants (무기계 방염제와 인계 방염제 혼합비율에 따른 기능성 오일스테인의 방염성능)

  • Lee, Ju-Won;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.29-30
    • /
    • 2023
  • Wood is a construction material that has the advantages of carbon dioxide storage ability, noise reflection, and eco-friendliness. In order to use wood for a long time, you must use wood-specific paint, which is called oil stain. Oil stain improves water resistance and moisture resistance, but has the disadvantage of being weak against fire. This is because the oil contained in the oil stain causes a chemical reaction, and this chemical reaction causes the oil stain to spontaneously ignite, igniting nearby combustible materials and causing frequent fires. To improve this, in this study, different flame retardants were mixed and added to oil stain to produce functional oil stain. In addition, we would like to apply it to wood to check glow time and carbonization area. As a result of the experiment, it shows the best performance when mixed at 30(15 + 15)(%) and added to oil stain. The remaining burn time is satisfied from 10% for all samples, and the carbonized area is satisfied when it is 30%.

  • PDF

Influence of Process Oil Content on Properties of Silica-SBR Rubber Compounds

  • Kim, Jung Soo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.55 no.3
    • /
    • pp.184-190
    • /
    • 2020
  • In the wet master batch process, process oil is used to improve the workability of silica-SBR. The process oil expands the polymer and provides lubrication to soften the stiff rubber chain. However, addition of excess process oil can interfere in the crosslinking reaction between rubber molecules and reduce the crosslinking density of silica-SBR. Controlling the amount of process oil is an important aspect for properly controlling the workability and crosslinking density of silica-SBR. In this study, silica-SBR was prepared by adjusting the amount of process oil to confirm its effect on silicaSBR. Vulcanization characteristics of silica-SBR were examined using a moving die rheometer. Dynamic viscoelasticity was measured using a dynamic mechanical thermal analyzer, and the mechanical properties were investigated using the universal testing machine according to ASTM D412. As a result, all silica-SBR compounds with 10 to 40 phr of process oil have effects of improving the processability and the silica dispersibility. Also, the optimum condition was determined when 10 phr of processed oil was added because the abrasion resistance was improved 65% compared to that at 40 phr.

Analysis of Electrical Contact Resistance Model in Multi-Contact of Tribological Elements (트라이볼로지 기소의 멀티접촉에서 전기접촉저항 모델해석에 관한 연구)

  • 김청균
    • Tribology and Lubricants
    • /
    • v.12 no.4
    • /
    • pp.52-59
    • /
    • 1996
  • The results of the electrical contact conductivity of multi-contact spots accounting the surface roughness and the non-conductive films of different origins such as air, water, cutting oil, and machining oil are presented. The array of metal spheres compressed between two flat plates has been used for simulation of the contact behavior of multiple contact of solids, under normal loading. Measurement of electrical contact resistance has been made using the equipment providing the adequate accuracy in the range of micro Ohms. The data on electrical contact resistance have been compared with theoretical predictions using the multiple contact model of constriction resistance. The effect of single spot number and array on conductivity of contact has been evaluated. The results of the experiments show that the contact resistance are closely related to the number of loading cycles, form of surface roughness, and presence of non-conductive films that reduce the size of the real electrical contact spots.

A Study on Chromium Electroplating of Piston Ring Groove's Surface (엔진피스톤링 홈의 크롬도금에 관한 연구)

  • 문경만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.47-55
    • /
    • 1995
  • When the low heavy oil is using as fuel oil to the diesel engine, some problems such as corrosion resistance, wear resistance and heat resistance are happened in diesel engine's internal material, especially the adhesive wear of piston ring groove was occurred as a important problem. Therefore to prevent adhesive wear of its groove, the surface of its groove used to be electroplated with Chrominum and for its Chromium electroplating, Fe anode is being used until nowadays because of its Special shape. However in case of using Fe anode, there were some problems such as deterioation of solution, property of Chromium film, and condition of coation. In this paper Pb anode electroplated withPb to the steel plate was investigated for its Chromium electroplating for Pb's high corrosion resistance in acid solution, and Pb anode is not dissolved compared with Fe anode and deterioration degree of solution in case of Pb anode is smaller than that of Fe anode and also property of Chromium film was better than that of Fe anode. Moreover it was known that the optimum cathodic current density for Pb electroplating to steel plate as insoluable anode for Chromium coating of piston ring groove is 30mA/$cm^2$ by experimental results obtained.

  • PDF

Stepwise Hull Form Design of DWT 75,000 Product Oil Carrier (순차적 설계기법에 의한 DWT 75,000 정유운반선의 선형설계)

  • Park, Yeon Seok;Bak, Sera;Jeong, Yohan;Choi, Jung-Kyu;Yoo, Jaehoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.6
    • /
    • pp.456-464
    • /
    • 2016
  • To design the modified hull form with relatively unfavorable dimensions and constraints than the parent ship the stepwise design was applied. In each design step the resistance characteristics was estimated by numerical calculations using CFD programs as Wavis 1.4, Wavis 2.1 and Fluent 12.1. The wave profiles along hull surface by potential flow calculations were investigated to improve wave resistance by modifying the bow shapes. To improve the stern shapes with a point of viscous form resistance the pressure distributions on hull surface and the limiting streamlines are investigated by viscous flow calculations. The design objectives such as shortening the LBP, enlarging the propeller tip clearance, moving forward of the LCB location and increasing the displacement were applied by stepwise to develop the new hull form of DWT 75,000 product oil carrier. Finally a new hull form was developed without the resistance performance loss compared with the parent ship.