• 제목/요약/키워드: oil leakage problems

검색결과 24건 처리시간 0.016초

Ultrahigh Vacuum Technologies Developed for a Large Aluminum Accelerator Vacuum System

  • Hsiung, G.Y.;Chang, C.C.;Yang, Y.C.;Chang, C.H.;Hsueh, H.P.;Hsu, S.N.;Chen, J.R.
    • Applied Science and Convergence Technology
    • /
    • 제23권6호
    • /
    • pp.309-316
    • /
    • 2014
  • A large particle accelerator requires an ultrahigh vacuum (UHV) system of average pressure under $1{\times}10^{-7}$ Pa for mitigating the impact of beam scattering from the residual gas molecules. The surface inside the beam ducts should be controlled with an extremely low thermal outgassing rate under $1{\times}10^{-9}Pa{\cdot}m^3/(s{\cdot}m^2)$ for the sake of the insufficient pumping speed. To fulfil the requirements, the aluminum alloys were adopted as the materials of the beam ducts for large accelerator that thanks to the good features of higher thermal conductivity, non-radioactivity, non-magnetism, precise machining capability, et al. To put the aluminum into the large accelerator vacuum systems, several key technologies have been developed will be introduced. The concepts contain the precise computer numerical control (CNC) machining process for the large aluminum ducts and parts in pure alcohol and in an oil-free environment, surface cleaning with ozonized water, stringent welding process control manually or automatically to form a large sector of aluminum ducts, ex-situ baking process to reach UHV and sealed for transportation and installation, UHV pumping with the sputtering ion pumps and the non-evaporable getters (NEG), et al. The developed UHV technologies have been applied to the 3 GeV Taiwan Photon Source (TPS) and revealed good results as the expectation. The problems of leakage encountered during the assembling were most associated with the vacuum baking which result in the consequent trouble shootings and more times of baking. Then the installation of the well-sealed UHV systems is recommended.

자동차의 블랙박스 와이어링 화재 위험성에 관한 연구 (A Study on the Fire Risk of Black Box Wiring in Motor Vehicle)

  • 강신동;김주희;최준표;김재호
    • 한국안전학회지
    • /
    • 제32권6호
    • /
    • pp.22-28
    • /
    • 2017
  • According to the National Fire Data System (NFDS), more than 5,000 vehicle fires have occurred every year for the last 10 years. Vehicle fires are primarily caused by mechanical (breaking system and engine), electrical (wiring and battery), and chemical (oil and fuel gas leakage) problems. The electrical factor has increased with the installation of driver convenience equipment. For example, today, the black box is widely used to provide video data recording of motor vehicle accidents. The black box consists of a front camera, rear camera, and wires. The black box wires are directly connected to the junction box or fuse box from the start battery that operates to provide normal on power supplying for engine stop. It is extremely dangerous when the wires short circuit due to insulation aging, mechanical and electrical stress, etc. In this study, the black box wiring fire risk have been analyzed and investigated when the steady state and abnormal operations, and under the following conditions: wiring arrangements with a high temperature condition, insulation aging, poor contact, and short circuits. The results showed that black box wiring short circuits had a higher fire risk than the other fire hazard elements. To prevent fire hazards caused by black box wiring, the black boxes must be installed by qualified service personnel. Do not modify the wiring, remove the fuse and secure the wiring using cable ties or insulation tape.

ARM 마이크로컨트롤러 기반 RTD-1000A의 구현 (The Implemention of RTD-l000A based on ARM Microcontroller)

  • 김민호;홍인식
    • 인터넷정보학회논문지
    • /
    • 제9권6호
    • /
    • pp.117-125
    • /
    • 2008
  • 유비쿼터스 응용 시스템에 대한 관심의 증대와 함께 소형화된 임베디드 컴퓨팅 시스템의 필요성은 커지고 있다. 이러한 가운데 ARM 임베디드 프로세서는 기능의 우수성과 높은 활용도로 인해 임베디드 시스템 시장에서 높은 점유율을 보여주고 있다. 본 논문에서는 ARM 마이크로컨트롤러를 이용해 RTD-1000 컨트롤러 구성과 개발을 위한 최적의 방법을 제안하였다. 기존 RTD-1000은 케이블의 단선, 단락, 파손 등의 진단이 가능한 TDR를 탑재하여 구리선을 삽입한 감지관의 누수 및 누유, 파괴 등을 원격으로 감지할 수 있는 기기이다. 실제로 시공되어 현장에서 운영되고 있는 RTD-1000은 시스템 운영에 필요한 범위에 비해 리소스 낭비가 크고 그에 따라 구축비용이 높다는 단점을 가지고 있다. 또한, 발열이 심해 별도의 냉각장치가 요구되며, 하드 디스크와 같은 보조저장장치의 사용으로 고장 발생율과 전류의 소비가 커지는 등의 문제점을 야기하였다. 본 논문에서는 도출된 문제점의 해결 방법으로 ARM 마이크로컨트롤러 기반의 RTD-1000A 임베디드 시스템을 제안하고 시뮬레이션 하였다.

  • PDF

Development of Life Test Equipment with Real Time Monitoring System for Butterfly Valves

  • Lee, Gi-Chun;Choi, Byung-Oh;Lee, Young-Bum;Park, Jong-Won;Nam, Tae-Yeon;Song, Keun-Won
    • International Journal of Fluid Machinery and Systems
    • /
    • 제10권1호
    • /
    • pp.40-46
    • /
    • 2017
  • Small valves including ball valves, gate valves and butterfly valves have been adopted in the fields of steam power generation, petrochemical industry, carriers, and oil tankers. Butterfly valves have normally been applied to fields where in narrow places installing the existing valves such as gate valves and ball valves have proven difficult due to the surrounding area and the heavier of these valves. Butterfly valves are used to control the mass flow of the piping system under low pressure by rotating the circular disk installed inside. The butterfly valve is benefitted by having simpler structure in which the flow is controlled by rotating the disc circular plate along the center axis, whereas the weight of the valve is light compared to the gate valve and ball valve above-mentioned, as there is no additional bracket supporting the valve body. The manufacturing company needs to acquire the performance and life test equipment, in the case of adopting the improving factors to detect leakage and damage on the seat of the valve disc. However, small companies, which are manufacturing the industrial valves, normally sell their products without the life test, which is the reliability test and environment test, because of financial and manpower problems. Furthermore, the failure mode analysis of the products failed in the field is likewise problematic as there is no system collecting the failure data on sites for analyzing the failures of valves. The analyzing and researching process is not arranged systematically because of the financial problem. Therefore this study firstly tried to obtain information about the failure data from the sites, analyzed the failure mode based on the field data collected from the customers, and then obtained field data using measuring equipment. Secondly, we designed and manufactured the performance and life test equipment which also have the real time monitoring system with the naked eye for the butterfly valves. The concept of this equipment can also be adopted by other valves, such as the ball valve, gate valve, and various others. It can be applied to variously sized valves, ranging from 25 mm to large sized valves exceeding 3000 mm. Finally, this study carries out the life test with square wave pressure, using performance and life test equipment. The performance found out that the failures from the real time monitoring system were good. The results of this study can be expanded to the other valves like ball valves, gate valves, and control valves to find out the failure mode using the real time monitoring system for durability and performance tests.