• Title/Summary/Keyword: oil in water emulsion

Search Result 386, Processing Time 0.024 seconds

Antioxidant Activity of γ-Oryzanol and Synthetic Phenolic Compounds in an Oil/Water (O/W) Emulsion System

  • Kim, Joo-Shin
    • Preventive Nutrition and Food Science
    • /
    • v.12 no.3
    • /
    • pp.173-176
    • /
    • 2007
  • ${\gamma}-Oryzanol$ is one of the chain breaking antioxidants. Both sterol (triterpene) and phenolic hydroxyl groups in the structure of ${\gamma}-oryzanol$ may be responsible for its antioxidative function. We hypothesize that ${\gamma}-oryzanol$ is more effective in preventing the autoxidation of polyunsaturated fatty acid (PUFA) than the synthetic phenolic compounds in an oil/water (O/W) emulsion system. The antioxidative effectiveness of different concentrations of ${\gamma}-oryzanol$ and synthetic antioxidants was evaluated at different incubation times (0, 4, 8, 16, and 32 h) by measuring both the formation of hydroperoxides and the decomposition product of hydroperoxides (hexanal) in each emulsion system. Overall, the order of effectiveness of various antioxidants for inhibiting the formation of hydroperoxide in the O/W emulsion was: ${\gamma}-oryzanol$> tert-butylhydroquinone (TBHQ)> butylated hydroxytoluene (BHT)> butylated hydroxyanisole (BHA). O/W emulsion with selective lower concentrations of ${\gamma}-oryzanol$ showed better effectiveness than that with higher concentration of synthetic antioxidants. However, the ability of both ${\gamma}-oryzanol$ and synthetic antioxidants to decompose hydroperoxide was similar. ${\gamma}-Oryzanol$ was more effective antioxidant than the synthetic phenolic compounds in preventing the formation of hydroperoxide in the O/W emulsion system.

Enhanced In-situ Mobilization and Biodegradation of Phenanthrens from Soil by a Solvent/Surfactant System

  • Kim, Eun-Ki;Ahn, Ik-Sung;L.W.Lion;M.L.Shuler
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.716-719
    • /
    • 2001
  • The mobilization and biodegradation of phenanthrene in soil was enhanced by using paraffin oil, which was stabilized by the addition of a surfactant (Brji 30). The ratio of paraffin oil/Brij 30 was determined by measuring the change in the critical micelle concentration. When only surfactant was used, the stabilized paraffin oil emulsion could dissolve more phenanthrene in the water phase. Column experiment showed increased phenanthrene mobilization from the contaminated soil. The phenanthrene mobilized in the paraffine oil/Brij 30 emulsion was biodegraded faster than that in water phase or surfactant solution. This result indicates that a paraffin oil/surfactant system can be effectively used for the removal of PAH from contaminated soil.

  • PDF

Antioxidative Activity of Some Antioxidants and Emulsifiers in Bulk and Emulsion Systems (Bulk와 Emulsion System에서 유지에 대한 항산화제와 유화제의 항산화효과)

  • Kim, In-Won;Shin, Dong-Hwa;Jang, Young-Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.1077-1083
    • /
    • 1999
  • This study was aimed to evaluate the effectiveness of hydrophilic, lipophilic antioxidants and emulsifiers by HLB (hydrophilic lipophilic balance) in different oil systems. Lipophilic antioxidant (${\delta}-tocopherol$), hydrophilic antioxidant (gallic acid) and emulsifier(lecithin, tween 20, span 60) were evaluated in relation to oil stability in bulk oil system (soybean oil) and emulsified with Tween 80 at $60^{\circ}C$. In the storage test ($60^{\circ}C$), gallic acid was more effective on the stability of oil oxidation than ${\delta}-tocopherol$ in bulk and emulsion system. Lecithin as a hydrophilic emulsifier was more effective than tween 20 on the stability of oil oxidation in bulk and emulsion system. Also span 60, a lipophilic emulsifier, was more effective than tween 20, a hydrophilic emulsifier, in bulk and emulsion systems.

  • PDF

A study of Stability of Emulsion Fuel (에멀젼 연료의 안정성에 대한 연구)

  • Kim, Moon-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.1330-1343
    • /
    • 2020
  • In this study, emulsion fuel which contained water of 10 ~ 20% was prepared mixed with water and MDO(Marine Diesel Oil) which largely used in near sea. Diffusion stability of emulsion fuel was measured. Diffusion stability was measured at 30℃, 45℃, and 60℃ for 10 days respectively. The stability of the emulsion fuel was stabilized in the order of MDO-10 > MDO-13 > MDO-16 > MDO-20 and it means that the stability of the emulsion fuel was found to be stable in the order of low water content. Meanwhile, an engine dynamo-meter was used to test whether the manufactured emulsion fuel was actually available in the engine. The emulsified MDO emulsion fuel could be used as fuel for ships. For samples with more than 16% water added emulsion fuel, smoke was reduced by more than 50% in the load area of more than 50%, and nitrogen oxides were reduced by 20%.

The Stability of Emulsions Formed by Phase Inversion with Variation of HLB of Surfactant (HLB 변화와 전상유화에 의해 형성된 에멀젼의 안정성)

  • Park, Soo-Nam;Yang, Hee-Jung;Kim, Jae-Hyun;Cho, Wan-Goo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.117-123
    • /
    • 2009
  • Caprylic/Capric triglyceride-in-water emulsions stabilized by Nikkol HCO-60 and HCO-10 were prepared using emulsion inversion point method at different HLB values. Emulsions with various droplet sizes were formed, and emulsion inversion point was detected by electrical conductivity. The change in emulsion droplet sizes and long term stability were monitored using laser scattering method and visual method. The droplet sizes and stability of emulsions were affected by HLB of surfactant. At emulsion inversion point, the water volume fraction increased as the HLB of surfactants decreased. According to our analysis, this resulted from a tendency of forming the W/O (water-in-oil) emulsion as the HLB of surfactants was decreased. The emulsion inversion point was clearly detected by the microscope and the electric conductivity meter. Nanometer-sized emulsion was obtained at the optimum HLB by using emulsion inversion point method. The main pattern of instability of emulsions in HLB 12 and 13 systems was Ostwald ripening. However, The patterns of instability of emulsions below 11 of HLB systems were Ostwald ripening and coalescence. All emulsions produced with surfactants in the range of HLB 8-13, creaming caused by density difference between water phase and oil phase.

Emulsion Electrospinning of Hydrophobic PTFE-PEO Composite Nanofibrous Membranes for Simple Oil/Water Separation

  • Son, Seo Ju;Hong, Seong Kyung;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.89-92
    • /
    • 2020
  • Polytetrafluoroethylene (PTFE) fibers are widely used in the textile industry, filter media, membrane distillation, electronic appliances, and construction. In this study, PTFE-polyethylene oxide (PEO) fibrous membranes were fabricated by emulsion electrospinning; subsequently, pure PTFE nanofibers were obtained via sintering. PTFE-PEO electrospinning solutions were prepared using different weight ratios to determine the optimized condition. As the ratio of the PEO increased, the fiber structure improved. Scanning electron microscopy and Fourier-transform infrared spectroscopy observations indicate that PEO is removed and PTFE fused gradually to form bonds among them during sintering. The obtained pristine PTFE membrane demonstrated hydrophobicity at 143.6° water contact angle and oleophilicity at 0° oil contact angle, which is known to be utilized for oil/water separation. A simple separation experiment was performed to remove oil droplets from water. The PTFE membrane exhibited good chemical stability and a high surface-area-to-volume nanofiber ratio. These excellent properties suggest that it is applicable to oil/water separation in harsh chemical environments.

Antioxidative capacity of hydrolyzed rapeseed cake extract and oxidative stability of fish oil-in-water emulsion added with the extract

  • Lee, A-Young;Lee, Jeung-Hee
    • Food Science and Preservation
    • /
    • v.24 no.4
    • /
    • pp.529-535
    • /
    • 2017
  • Rapeseed cake was extracted with 80% ethanol and then fractionated with $H_2O$ (fraction I) as well as with 30% (II), 50% (III), 70% (IV), and 100% ethanol (V). Total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, ferric-reducing antioxidant potential, and Trolox equivalent antioxidant capacity were in the order of fractions II > III > I > IV > V. The three fractions with high antioxidant activities and TPC (I, II, and III) were pooled and hydrolyzed by NaOH solution, resulting in 18.97 mg sinapic acid/g hydrolyzed extract and 21- and 2.2-fold increases in TPC and DPPH radical scavenging activity, respectively. Hydrolyzed rapeseed cake extracts (200, 500, and 1,000 ppm) and catechin (200 ppm) as a comparison were added to 10% fish oil-in-water emulsion, and their effects on oxidative stability were investigated by measuring hydroperoxide values (PV) during refrigerated storage. PVs were significantly lower in the emulsions with added hydrolyzed extract as compared to the control (p<0.05) and significantly decreased with increasing extract concentration (p<0.05) over a period of 29 days. The emulsion added with hydrolyzed extract showed higher PV than that added catechin at the same concentration (200 ppm) during 13-22 days (p<0.05), but after then, the PV was not significantly different (p>0.05). This study indicates that hydrolyzed rapeseed cake extract rich in sinapic acid may inhibit oxidation in a fish oil-in-water emulsion in a concentration-dependent manner.

Gastrointestinal Absorption of Phenytoin from on Oil-in-water Microemulsion

  • Kwon, Kwang-Il;Bourne, David-W.A.
    • Archives of Pharmacal Research
    • /
    • v.20 no.5
    • /
    • pp.480-485
    • /
    • 1997
  • The absorption profile of phenytoin Na emulsion were examined compared to that of phenytoin suspension after oral administration in the rat. The corn oil-in-water emulsion, particle size of $184{\pm}$57.8 nm, was prepared using a microfludizer, and phenytoin Na added by shaft homogenizer. The phenytoin emulsion or suspension, 100 mg/kg, were intubated intragastrically using oral dosing needle and blood samples were withdrawn via an indwelling cannula from the conscious rat. Plasma concentrations of phenytoin were measured with HPLC using phenacetin as an internal standard. The plasma concentration versus time data were fitted to a one compartment open model and the pharmacokinetic parameters were calculated using the computer program, Boomer. The phenytoin plasma concentrations from the emulsion at each observed time were about 1.5-2 times higher than those from the suspension, significantly at time of 5, 6 and 7 hr after administration. The absorption $(k_a)$ and elimination rate constant $(k_e)$ were not altered significantly, however the AUC increased from 65.6 to $106.7{\mu}ghr/ml$ after phenytoin suspension or emulsion oral administration, respectively. From an equilibrium dialysis study, the diffusion rate constant $(k_{IE})$ was considerably higher from the phenytoin Na emulsion $(0.0439 hr{-1})$ than phenytoin suspension $(0.0014 hr{-1})$.

  • PDF

Disjoining Process Isotherms for oil-water-oil Emulsion Films (오일-물-오일 에멜젼막의 Disjoining Pressure에 관한 연구)

  • 조완구
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.23 no.2
    • /
    • pp.71-96
    • /
    • 1997
  • We have used a novel liquid surface forces apparatus to determine the variation of disjoining pressure with film thickness for dodecane-water-dodecane emulsion films. The LSFA allows measurement of film thicknesses in the range 5-100 nm and disjoining pressure from 0-1500 Pa. Disjoining pressure isotherms are given for films stabilised by the nonionic surfactnat n-dodecyl pentaoxyethylene glycol ether$(C_{12}E_5)$ and n-decyl-$\beta$-D-glucopyranoside($C_{10}- $\beta$-Glu)$ and the anionic surfactant sodium bis(2-ethylhexyl) sulphosuccinate(AOT) in the presense of added electrolyte. For $C_{12}E_5$ and AOT, the emulsion films are indefinitely stable even for the highest concentration of NaCl tested (136.7 Nm) whereas the $C_{10}-{eta}-Glu$ film shows coalescence at this salt concentration. For film thicknesses greater than approximately 20 nm with all three surfactants, the disjoining pressure isotherms are reasonably well described in terms of electrostatic and van der Waals, forces. For the nonionic surfactant emulsion films, the charge properties of the monolayers are qualitatively similar to those seen for foam films. For AOT emulsion films, the monolayer surface potentials estimated by fitting the isotherms are similar to the values of the zeta potential measured for AOT stabilised emulsion droplets. For thin emulsion films certain systems showed isotherms which suggested the presence of an additional repulsive force with a range of approximately 20 nm.

  • PDF

It's effects for engine emission of water/oil emulsified fuel (Water/Oil 에멀젼 연료가 배출가스에 미치는 영향)

  • Kim, Moon-Chan;Lee, Chang-Suk
    • Analytical Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.159-166
    • /
    • 2008
  • In this study, the characteristics of emulsified fuel and engine emissions were studied. Emulsified fuel which composed of water and diesel was manufactured by using homogenizer and ultrasonic generator. Engine emissions were studied whit engine dinamometer. In emulsified fuel, density and viscosity were increased with increasing water contents, but viscosity was decreased over 60% of water in emulsion fuel. The emulsion type of W/O changed to that of O/W over 60% of water in emulsion fuel. In the results of engine dinamometer test, NOx concentration and smoke density were reduced with increasing water contents in emulsified fuel but reciprocal in the case of THC, CO. Temperature and power were reduced with increasing water contents in emulsion fuel. In conclusion, it seemed that using emulsified fuel for diesel engine was effective for reducing NOx concentration and smoke density.