• Title/Summary/Keyword: oil efficient consumption structure

Search Result 4, Processing Time 0.017 seconds

A Study on the Effects of Oil Shocks and Energy Efficient Consumption Structure with a Bayesian DSGE Model (베이지안 동태확률일반균형모형을 이용한 유가충격 및 에너지 소비구조 전환의 효과분석)

  • Cha, Kyungsoo
    • Environmental and Resource Economics Review
    • /
    • v.19 no.2
    • /
    • pp.215-242
    • /
    • 2010
  • This study constructs a bayesian neoclassical DSGE model that applies oil usage. The model includes technology shocks, oil price shocks, and shocks to energy policies as exogenous driving forces. First, this study aims to analyze the roles of these exogenous shocks in the Korean business cycle. Second, this study examines the effects of long-term changes in the energy consumption structure, including the reduction in oil use as a share of energy consumption and improvement in oil efficiency. In the case of oil price shocks, results show that these shocks exert recessionary pressure on the economy in line with those obtained in the previous literature. On the other hand, shocks to energy policies, which reduce oil consumption per capital, result in opposite consequences to oil price shocks, decreasing oil consumption. Also, counterfactual exercises show that long-term changes in the energy consumption structure would mitigate the contractionary effects of oil price shocks.

  • PDF

A Study on Construction of an Optimal Fossil Fuel Mix: A Portfolio-Based Approach (평균-분산 모형을 이용한 화석에너지원 소비조합 구성에 관한 연구)

  • Cha, Kyungsoo
    • Environmental and Resource Economics Review
    • /
    • v.20 no.2
    • /
    • pp.335-356
    • /
    • 2011
  • In this paper, we attempted to suggest a way to evaluate appropriateness and efficiency for the energy consumption structure. For this, based on Markowitz (1952)' mean-variance portfolio model, we constructed an optimal fossil fuel mix. In constructing the optimal mix, we first defined returns on fossil fuels (oil, coal and natural gas) as TOE (Ton of Oil Equivalent) per $1. Then, by using the dynamic latent common factor model, we decomposed the growth rates of the returns on each fossil fuel into two parts : the common part and the idiosyncratic part. Finally, based on the results from the dynamic latent common factor model, we constructed the optimal fossil fuel mix implied by the mean-variance portfolio model. Our results indicate that for the fossil fuel mix to be on the efficient frontier, it is crucial to reduce oil consumption as low as possible. Moreover, our results imply that it is more efficient to increase natural gas consumption rather than coal consumption in reducing oil consumption. These results are in line with the strategies for the future energy consumption structure pursued by Korea and indicate that reduction in oil use can improve overall efficiency in energy consumption.

  • PDF

Consideration of the Lifting Lug Structure using the Hybrid Structural Design System (하이브리드 구조설계 시스템을 이용한 선박블록 탑재용 러그구조 고찰)

  • Ham, Juh-Hyeok;Kim, Dong-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.104-109
    • /
    • 2009
  • In the view of the importance of material reduction due to the jump in oil and steel prices, an optimized structural system for lifting lugs was developed. Such a system is needed hundreds of thousands of times a year. A direct design process was added to this developed optimized system to increase the design efficiency and provide a way of directly inserting a designer's decisions into the design system process. In order to verify the system efficiency and convenience, several new prototype lug shapes were suggested using the developed system. From these research results, it was found that the slope of the main plate of the lug structure has a tendency to move from about 45 degrees to about 60 degrees and the design weight was reduced from an initial value of about 32kgf to about $15{\sim}19kg_f$ after the redesign. Based on these initial research results, an efficient reduction in steel weight was expected considering the enormous consumption of lug structures per year. Additionally, a more detail structural analysis through local strength evaluations will be performed to verify the efficiency of the optimum structural design for a lug structure.

A Study on the Effective Utilization Plan through Field Investigation and Analysis with Power Transformers in Domestic Areas

  • Shin, Heung-Sik;Lee, Jae-Cheon;Bai, Seok-Myung;Kim, Seon-Gu;Kim, Jin-Tae;Kim, Gi-Hyeon;Jeong, Jong-Wook;Bang, Seon-Bae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.4
    • /
    • pp.88-95
    • /
    • 2007
  • Korea is highly dependent on foreign countries for energy while at the same time having a high energy-consumption industrial structure. Therefore, logical improvements in energy use efficiency and nationwide energy saving are becoming more and more important in coping with the worldwidehigh oil prices and environmental issues such as listed in the Kyoto Protocol to the United Nations Framework Convention on Climate Change. Consequently, a study was conducted on the average annual load factor in domestic areas to set a reasonable and reliable technology standard plan for high-efficiency transformers. The average annual load factor in Korea was discovered to be 18.4[%] classified by industry. This factor is expected to be used in arranging a domestic standard for a minimum efficiency system for transformers, and in reviewing and supplementing the standard transformers plan for the High Energy-Efficiency Appliance Certification. The expected effect from the establishment of the technology standards plan for highly efficient transformers is the expansion of the manufacturing and distribution of highly efficient transformers that are suitable for domestic use. These will lead to electricity cost savings for users, strengthening the related industries' market competitive powers and the effective reduction of greenhouse gases on a national level by drastically reducing loss from transformers, which accounts for a large portion of the total electric supply losses.