• 제목/요약/키워드: oil cooling

검색결과 367건 처리시간 0.027초

피스톤 오일 냉각 유로 형태에 따른 수집효율 성능 비교 (Performance Comparison of Collecting Efficiencies to Various Types of Piston Oil Cooling Gallery)

  • 이정근;전상명;주대헌;류관호
    • Tribology and Lubricants
    • /
    • 제26권1호
    • /
    • pp.21-30
    • /
    • 2010
  • In this research, it is investigated the collecting efficiency of jet oil to several types of piston oil cooling gallery by using recently developed PCJ (piston cooling jet) rig tester. So it will be selected for a better design of piston oil cooling gallery. The collecting efficiencies at each type of piston cooling galleries are measured under conditions of a few piston positions, and several oil jet pressures and oil viscosities. Furthermore, the type of jet cone will be compared for a few jet pressure conditions. The selected type of piston oil cooling gallery is planned to be applied to the target engine which is now developing to satisfy the EURO VI emission regulation.

원유펌프시스템의 열전달해석 및 냉각설계 (Heat Transfer Analysis and Cooling Design for Crude Oil Pump System)

  • 김완기;이준엽;권중록;김해천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2017-2022
    • /
    • 2008
  • The crude oil pump system is the equipment for transporting crude oil and it consists of 3 major components, a motor and an impeller which discharge underground crude oil, a pipestack that transmits the cooling oil and power, and a cooling oil unit & junction box that provides cooling oil and electric power. When considering the system characteristics that it has to be installed at a depth of deeper than 100 m, a design technology for the efficient control of the heat occurring at a conductor and motor is necessary and it is the essential factor for ensuring system durability. In this paper, therefore, cooling oil flow has been calculated to satisfy the limit value of the system temperature by analyzing heat flow considering the related losses such as loss of conductor, contact resistor loss at the conductor connection, and operation loss of motor. And the operation temperature has been set up based on the temperature of crude oil and the heat of motor and conductor. Also, a design for cooling of crude oil pump system has been proposed by calculating the operation pressure loss and selecting the capacity of a cooling oil pump and a heat exchanger.

  • PDF

피스톤 냉각용 엔진오일 제트 유동특성 (Flow Characteristics of Oil Jet for Cooling a Piston)

  • 리리;이종훈;정호윤;김재환;이연원
    • 동력기계공학회지
    • /
    • 제10권4호
    • /
    • pp.50-55
    • /
    • 2006
  • An efficient cooling system for a piston of an automotive engine is very important. Therefore a large capacity gasoline engine or diesel engine has adopted the direct injection cooling system to increase its cooling efficiency. In this direct cooling system, an cooling oil is injected to a piston directly using an oil jet and this cooling oil flows through an oil gallery inside the piston. Flow rate and injection accuracy of this cooling oil are very important because these are main factors that have influence on its efficiency. The purpose of this study is to understand the changes of flow characteristics with various curvatures and diameters of an outlet nozzle and to check whether engine oil enters into the oil gallery well or not. From this study, we found that secondary flow was formed in a curved part of jet due to centrifugal force and irregular flow pattern appeared at the jet outlet. This pattern has influence on flow characteristics of engine oil entering the gallery. These simulation results have a good agreement with experiments.

  • PDF

피스톤 오일 냉각 유로의 성능 검증을 위한 리그 시험기 개발 (Rig Tester Development for the Performance Validation of a Piston Oil Cooling Gallery)

  • 전상명;이정근;주대헌;류관호;하대홍
    • Tribology and Lubricants
    • /
    • 제25권6호
    • /
    • pp.387-398
    • /
    • 2009
  • The operation condition of recently designed pistons for high power and high speed diesel engine become more severe due to the increment of combustion pressure and temperature. So, in order to overcome high temperature, the application of the mono-metal cast aluminum alloy piston featuring an enclosed cast-in open cooling gallery has increased. In this research, it is developed a PCJ (piston cooling jet) rig tester, described the test procedure and validated the performance of sample piston cooling gallery design. Then the test rig will be used for developing the design technology of piston cooling gallery. The test rig is composed with oil reservoir and pumping system, oil jet system, piston fixing and moving system, collecting oil measuring system, and data measuring and recording system. It will be measured collecting efficiencies under conditions of a few piston positions, oil jet pressures and oil viscosities for a piston cooling gallery. Furthermore, the PCJ rig tester will be used for the optimum design of the oil cooling gallery which being applied to increase the cooling efficiency of pistons in diesel engines satisfying the EURO V emission regulation and the more.

압축냉각공기와 오일미스트를 이용한 환경친화 연삭가공기술 (Ecological Grinding Technology Using Compressed Cold Air and Oil Mist)

  • 이석우;최헌종;허남환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.24-27
    • /
    • 2002
  • The environmental problems by using coolant demanded the new cooling methods. As one of them, the studies on the finding with compressed cold air and oil mist have been done. The cooling method using compressed cold air was effective through going down the temperature of compressed air supplied below $-25^{\circ}$ and increasing the amount of compressed cold air, but had not enough cooling effect due to the low performance of lubrication. Therefore, the cooling methods using oil mist newly were suggested. This method can satisfy both cooling effect and lubrication with only small amount of coolant, also have the benefit in the point of decreasing the environmental pollution. This paper focused on analyzing the grinding characteristics of the cooling method using oil mist. The grinding test according to compressed cold air, oil mist spray pressure and oil mist supply direction were done.

  • PDF

주변압기 냉각시스템의 최적오일온도 (Optimal Oil Temperature at the Main Transformer Cooling System)

  • 한도영;원재영
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.955-960
    • /
    • 2009
  • In order to improve the efficiency of the main transformer in a tilting train, the optimal operation of a cooling system is necessary. Mathematical models of a main transformer cooling system were developed. These include models for the main transformer, the oil pump, the oil cooler, and the blower. The optimal oil temperature algorithm was also developed. This consists of the optimal setpoint algorithm and the control algorithm. A simulation program was developed by using mathematical models and the optimal oil temperature algorithm. Simulation results showed that the dynamic behavior of a main transformer cooling system was predicted well by mathematical models and a main transformer cooling system was controlled effectively by the optimal oil temperature algorithm.

  • PDF

정밀 오일냉각기의 오일온도 제어오차에 관한 연구 (A Study on the Oil Temperature Control Errors of Precision Oil Coolers)

  • 이상호;이찬홍;김갑순
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.451-454
    • /
    • 2003
  • The Oil Coolers is very important unit for the stable thermal performance in machine tools, semiconductor equipments and high precision measuring systems. To select a proper oil cooler for the temperature control of core unit in a machine, not only cooling ability but also static and dynamic sensitivity of temperature sensors are considered. In this paper, the relationship between cooling ability and inflow oil temperature is identified. The cooling ability is increased with the increase of inflow oil temperature. The oil temperature control errors of a cooler are influenced by mainly sensitivity of temperature sensors and heating velocity in a machine. The validity of error cause analysis for temperature control is proved by real cooling experiments with inflow and outflow temperature sensors.

  • PDF

피스톤 냉각용 Oil Jet 유동 수치해석 (A Numerical investigation of Oil Jet in an Engine Piston)

  • 리리;권지혁;정호윤;최윤환;이연원
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.33-34
    • /
    • 2005
  • The internal state of an automotive engine is very severe. A piston exposes burnt gas of over $2000^{\circ}$ nd is shocked by high pressure at the time of explosion. Furthermore strong friction is caused by high speed motion. A study on the cooling of the piston requires because the cooling and lubrication of the piston has an effect on the life and efficiency of engine directly. The previous system of oil jet cooled only the bottom of the piston. In order to improve the cooling efficiency, the oil gallery is made inside the piston, and oil flows into the oil gallery. The flow rate of oil at the entrance of oil gallery is important because of the cooling efficiency. The purpose of this study is the investigation of fluid flow characteristics of oil jet and flow rate into the oil gallery.

  • PDF

틸팅열차 주변압기 냉각시스템의 동적모델 (Effective Dynamic Models of a Cooling System for the Main Transformer in a Tilting Train)

  • 한도영;노희전;원재영
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.22-29
    • /
    • 2008
  • In order to improve the efficiency of a main transformer in a tilting train, the optimal operation of a cooling system is necessary. For the development of optimal control algorithms of a cooling system, mathematical models of a main transformer cooling system were developed. These include dynamic models of a main transformer, an oil pump, an oil cooler, a blower, and a pipe. Control algorithms for a blower and an oil pump were selected in order to identify the effectiveness of dynamic models. A simulation program was developed by using the developed dynamic models and the selected control algorithms. Simulation results showed good predictions of dynamic behaviors of a main transformer cooling system. Therefore, dynamic models, which were developed in this study, may be effectively used to develop control algorithms of a main transformer cooling system.

  • PDF

The Neural-Fuzzy Control of a Transformer Cooling System

  • Lee, Jong-Yong;Lee, Chul
    • International Journal of Advanced Culture Technology
    • /
    • 제4권2호
    • /
    • pp.47-56
    • /
    • 2016
  • In transformer cooling systems, oil temperature is controlled through the use of a blower and oil pump. For this paper, set-point algorithms, a reset algorithm and control algorithms of the cooling system were developed by neural networks and fuzzy logics. The oil inlet temperature was set by a $2{\times}2{\times}1$ neural network, and the oil temperature difference was set by a $2{\times}3{\times}1$ neural network. Inputs used for these neural networks were the transformer operating ratio and the air inlet temperature. The inlet set temperature was reset by a fuzzy logic based on the transformer operating ratio and the oil outlet temperature. A blower was used to control the inlet oil temperature while the oil pump was used to control the oil temperature difference by fuzzy logics. In order to analysis the performance of these algorithms, the initial start-up test and the step change test were performed by using the dynamic model of a transformer cooling system. Test results showed that algorithms developed for this study were effective in controlling the oil temperature of a transformer cooling system.